

First Deployment of XCache for Workflow and Efficiency Optimizations on Opportunistic HPC Resources in Germany CHEP 2024 – 19.10.2024 - 25.10.2024

Robin Hofsaess, M. Giffels, A. Gottman, A. Petzold, G. Quast, M. Schnepf, A. Streit | 22. October 2024

www.kit.edu

Can we use an HPC share as a WLCG Grid Site?

Can we use an HPC share as a WLCG Grid Site?

This means:

- A fixed pledge that needs to be guaranteed
- Reliability that is comparable to classic grid sites
- An efficient operation and utilization of the resource
- What about storage?

Why? The Future of HEP Computing in Germany!

Source: German HEP Computing Strategy paper

- Transition from Tier-2 centers at universities¹ to shares on national HPC centers within the NHR computing compound
- Storage will be moved to the Helmholtz centers KIT and DESY

¹NOTE: This does not mean that the T2 groups are closed!

HPC Centers vs. Classic Grid Sites

A Multi-Purpose HPC Cluster

- Typically bigger centers with new, highly efficient hardware
- More sustainable on large scale
- Interdisciplinary used, HEP community with a rather small share
- Typically strong **performance** focus
- A USER among many, high security standards and few permissions

A WLCG Tier-2 Center

- Small centers with longer hardware half-life
- Cooling overhead, older hardware, etc
- HEP only, tailored to the WLCG requirements (e.g. cvmfs)
- Data Throughput-optimized
- **ADMIN** with all permissions, trusted (production) users

Conclusion

- The compute models differ, multi-purpose HPC centers are **not necessarily suited** for HEP workflows
- The utilization of HPC centers bears many advantages: sustainability, performance, collaboration ...

VS.

The (Opportunistic) Utilization of HPC

- For that, we provide a **toolkit**: COBalD/TARDIS
- In production since several years!

COBalD/TARDIS

- The software is designed for the dynamic integration of resources according to the demand into an overlay batch system
- More details in backup
- Interested? Feel free to contact us, we are glad to help!

Scientific Computing Center

The (Opportunistic) Utilization of HPC

- In Germany, we dynamically integrate several distributed resources of different kinds opportunistically into the German WLCG infrastructure
- For that, we provide a **toolkit**: COBaID/TARDIS
- In production since several years!

COBalD/TARDIS

- The software is designed for the dynamic integration of resources according to the demand into an overlay batch system
- More details in backup
- Interested? Feel free to contact us, we are glad to help!

The (Opportunistic) Utilization of HPC: HoreKa

HoreKa

- HoreKa is a **multi-purpose HPC** cluster within the NHR computing compound
- Scientists of German universities can apply
- Integrated opportunistically for over 3 years
- We are allowed to backfill + a test project for CMS has recently been approved

The (Opportunistic) Utilization of HPC: HoreKa

HoreKa

- HoreKa is a **multi-purpose HPC** cluster within the NHR computing compound
- Scientists of German universities can apply
- Integrated opportunistically for over 3 years
- We are allowed to backfill + a test project for CMS has recently been approved

Observations

- HPC integration works in general, but ...
 - Higher failure rate
 - Overall lower CPU efficiency

in comparison to our Tier-1 and Tier-3 centers

Possible Solution: Pre-fetching the Data?

Could we pre-fetch the data **before** a job is starting?

- Complicated to realize (for CMS), would require changes in the submission infrastructure
- Overall, not very efficient or even impossible with current setup, e.g. in case of MC PREMIX:

Data Aggregation System (DAS): Home Services Keys Bug report Status CLI FAQ Help
results format: list v), 50 v results/page, dbs instance prod/global v), (search) Reset
dataset=/Neutrino_E-10_gun/Run3Summer21PrePremix-Summer23_130X_mcRun3_2023_realistic_v13-v1/PREMIX Show DAS keys description
Showing 1—1 records out of 1.
Dataset: <u>Neutrino E-10_gun/Run3Summer21PrePremix-Summer23_130X_mcRun3_2023_realistic_v13-v1/PREMIX</u> Dataset size: 818869411465597 (818.9TB) Number of blocks: 173 Number of events: 2020/97299 Number of files: 37993 Cr
Release, Blocks, Files, Runs, Contigs, Parents, Children, Sites, Physics Groups XSUB Sources: Cost show Showing 1—1 records out of 1.

XBuffer: Deployment of XCache for Data-Access Bottleneck Mitigation on HPC

Setup

- XRootD proxy file cache running within an apptainer instance on a login node
- The worker nodes are configured to redirect their traffic

Why XBuffer?

The focus lies more on the pre-fetching of small amounts of data (*buffering*) than on the caching

INK: Data access steps described in BU

To cache or not to cache? That is the question!

• Can be very useful with a decent cache hit rate:

- Strongly depends on job mix, data sets, cache size, ...
- May be useful for analysis, but rather not for production
- From our experience on HPC: bleeding edge and still error-prone

Plans

- We plan to conduct further studies
- Especially selective caching might be an option, e.g. only cache NANOAOD datasets, certain sites, or may only use it for Analysis jobs
- Big THANKS to the XRootD developers for the support and very fruitful collaboration!

Benefits

Faster Bandwidth

- Accelerated data access
- Pre-fetching (*buffering*) helps utilizing the available bandwidth more balanced
- XCache's caching may be beneficial

Monitoring

- HPC typically does not provide/allow much
- Adds capabilities:
 - XRootD monitoring + logs
 - apptainer instance stats
 - Own tools

New Possibilities!

- Feature Request: Support of native RDMA for XRootD
- Our setup may could enable centers without external connectivity on the worker nodes in the future

Benefits

Faster Bandwidth

- Accelerated data access
- Pre-fetching (*buffering*) helps utilizing the available bandwidth more balanced
- XCache's caching may be beneficial

Monitoring

- HPC typically does not provide/allow much
- Adds capabilities:
 - XRootD monitoring + logs
 - apptainer instance stats
 - Own tools

New Possibilities!

- Feature Request: Support of native RDMA for XRootD
- Our setup may could enable centers without external connectivity on the worker nodes in the future

Summary

- The setup not only **works well**, but also offers other advantages and benefits in addition to speeding up data access, e.g. for site operation
- Still in testing phase; we are constantly improving the setup in close contact with the XRootD team

Karlsruher Institut für Technologie

Conclusion and Outlook

Conclusion and Outlook

Yes!

Conclusion and Outlook

Yes!

Conclusion

- We run a fully functioning, containerized setup on the HoreKa HPC center, despite very limited permissions
- Our prototype shows that a **reliable and efficient** integration of HPC is possible
- With the setup:
 - The failure rate dropped to an average level
 - CPU efficiency is now comparable with our Tier-1 and Tier-3!

Further Plans

- Further studies and optimizations will be carried out in the future, especially focusing on caching and data locality
- Long term plans:
 - Dedicated transfer and caching nodes placed at the attached WLCG site (e.g. the T1 for HoreKa) may enhance the setup
 - However, this needs firewall bypasses et cetera and is therefore very site specific

BACKUP

Dynamic Integration of (Opportunistic) Resources

- COBalD/TARDIS is a tool for the dynamic on-demand integration of resources into an HTCondor overlay batch system
- The demand is determined by the allocation and utilization of a resources
- Allowing for feedback-based meta-scheduling
- The tool greatly simplifies the integration of additional resources and is widely used in the German HEP computing

More info: https://matterminers.github.io/ and https://github.com/MatterMiners

Monitoring

- Very comprehensive monitoring stack, helping a lot with site operation and overcoming the limitations of HPC
- All containerized and easily to deploy. On HPC, everything is running in apptainer containers without additional permissions
- Unifying experiment monitoring with our own and site monitoring data in our meta-monitoring HappyFace4

Using XCache as a Proxy for Accelerated Data Access

Description of:

- 1 Instead of initiating a data transfer over the 1G WAN connection of the worker nodes, the data request is **redirected** to the XRootD (caching) proxy on a login node.
- **2** The transfer is executed on the login node with the **faster 50G connection** by the XRootD caching proxy. **Pre-fetching** may be enabled to create a *buffering* effect for the data access.
- **3** Internally, the data is transported via the **200G IPoIB** internal network connecting the login node and the workers.
- 4 Transferred data can be **cached on-the-fly** on the parallel filesystem, mounted on the login node and the workers as well, if enabled.
- **5** In case a file is completely cached, a **direct file access (dca)** over the filesystem is possible, accelerating the transfer by a **factor of 10-100** (over 3GB/s)

Implementation Details (I)

- Host: RHEL8
- Config: usernamespaces, CGroups v2, systemd user services
- Currently running: XRootD v5.7.1 as Alma9 apptainer instance (image bootstrapped from docker)
- In principle, up to 76c and 500GB RAM, 50G WAN
 - But shared with other users (limitation via apptainer instance with CGv2 possible)
 - Current usage: 32t, 64GB memory
- 250T quota on gpfs (via IB)

Implementation Details (II)

- To enable the proxy for transfers, we currently do not use the XrdClProxyPlugin
- Instead, the proxy is added to the siteconf directly
- Advantages:
 - We can use the intended fallback mechanism if something fails
 - It is only enabled for file reads
- Disadvantages: mainly flexibility
 - Changes always require a change in the repo and a full restart of the service

