
1

Improving overall GPU sharing
and usage efficiency with

Kubernetes

Diana Gaponcic, Ricardo Rocha, Diogo Filipe Tomas Guerra, Dejan Golubovic

CHEP 2024

2

3

What can we do?

4

What can we do?

GPU Sharing is Caring

5

What can we do?

GPU Sharing is Caring

How do we share?

6

How do we share?

1. Infrastructure level
2. GPU level

a. logical level
b. hardware level

7

Kubernetes does a great job at this

8

GPU Sharing at the Infrastructure level

Single point of access to a platform with GPU access:

1. GPUs are always in-use
a. As soon as a GPU is released by an user, it is reassigned

to another one requesting a GPU
2. People can get access to multiple types of GPUs, or even

other accelerators (TPUs, IPUs) through public cloud.

9

Let’s see this in practice

10

Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

11

Example Use Cases
(very different GPU consumption behaviour)

An inference service which is occasionally
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

12

Example Use Cases
(very different GPU consumption behaviour)

An inference service which is occasionally
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Never know what to expect from a
notebook user:

● Potential memory leaks
● Poorly considered batch size
● GPU memory locked by an idle notebook

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

* All use cases were run on a CERN
Kubernetes cluster with 1 NVIDIA
A100 40GB GPU

13

Onboard Use Case 1

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

14

Onboard Use Case 1

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

15

● GPU underutilized
● Steady memory utilization ~ 20%

Onboard Use Case 1

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

16

Conclusion

Unused GPUs can be re-assigned to other users
requesting them => This ensures GPUs are always
in use

Many use cases will not fully utilize the GPUs => A
lot of wasted idle resources

17

Can we do more?

18

How do we share

1. Infrastructure level
2. GPU level

a. logical level
b. hardware level

19

Logical level sharing: Time-slicing

● The scheduler gives an equal share of time to all GPU processes and alternates
them in a round-robin fashion.

● The memory is shared between the processes
● The compute resources are assigned to one process at a time

20

values.yaml in NVIDIA gpu operator Helm
chart
...
devicePlugin:
 config:
 name: nvidia-time-slicing-config

$ cat nvidia-time-slicing-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-time-slicing-config
 namespace: kube-system
data:
 slice-4: |-
 version: v1
 sharing:
 timeSlicing:
 renameByDefault: true
 failRequestsGreaterThanOne: true
 resources:
 - name: nvidia.com/gpu
 replicas: 4

Allocatable:
 …
 nvidia.com/gpu: 1

Allocatable:
 …
 nvidia.com/gpu: 0
 nvidia.com/gpu.shared: 4

How to setup Time-slicing on Kubernetes

21

● GPU underutilized
● Steady memory utilization

~ 20%

Use case 1

22

● Improved GPU utilization
● Better memory consumption (~ 50 %)

● GPU underutilized
● Steady memory utilization

~ 20%

Use case 1

Use cases
1 & 2

* Time-Slicing GPU Sharing

23

Use cases
1 & 2 & 3

* Time-Slicing GPU
Sharing

GPU utilization 100%

… Perfect, right?

24

Use cases
1 & 2 & 3

* Time-Slicing GPU
Sharing

GPU utilization 100%

… Perfect, right?

No.

Use case 3 used all the
memory, and starved
the other 2 processes.

25

Advantages Disadvantages

Works on a wide range of NVIDIA

architectures

No process/memory isolation

Easy way to set up GPU concurrency No ability to set priorities

An unlimited number of partitions Inappropriate for latency-sensitive

applications (ex: desktop rendering

for CAD workloads)

Logical level sharing: Time-Slicing

26

Can we do even more?

27

How do we share

1. Infrastructure level
2. GPU level

a. logical level
b. hardware level

28

Hardware level sharing - MIG

Multi Instance GPU (MIG) can partition the GPU into up to seven

instances, each fully isolated with its own high-bandwidth

memory, cache, and compute cores.

MIG Profiles on A100

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

29

values.yaml in NVIDIA gpu operator Helm
chart
...
mig:
 strategy: mixed
migManager:
 config:
 name: nvidia-mig-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-mig-config
data:
 config.yaml: |
 version: v1
 mig-configs:
 # A100-40GB
 3g.20gb-2x2g.10gb:
 - devices: all
 mig-enabled: true
 mig-devices:
 "2g.10gb": 2
 "3g.20gb": 1

Allocatable:
 …
 nvidia.com/gpu: 1

Allocatable:
 …
 nvidia.com/gpu: 0
 nvidia.com/mig-2g.10gb: 2
 nvidia.com/mig-3g.20gb: 1

How to setup MIG on Kubernetes

30

Every process:
● Is isolated
● Saturates own resources
● Cannot influence other

processes

… Perfect, right?

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU Sharing

31

Every process:
● Is isolated
● Saturates own resources
● Cannot influence other

processes

… Perfect, right?

Yes.

Use case 3 starved itself,
use cases 1 & 2 continued
running without issues!

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU Sharing

32

Advantages Disadvantages

Hardware isolation allows processes

to run securely in parallel and not

influence each other

Only available for Ampere, Hopper,

and Blackwell architecture

Monitoring and telemetry data

available at partition level

Reconfiguring the partition layout

requires all running processes to be

evicted

Allows partitioning based on use

cases, making the solution flexible

* Potential loss of available memory

depending on chosen profile layout

Hardware level sharing - MIG

* Not a risk if the partitioning layout is chosen in an informed way after careful consideration.

33

Performance tradeoffs
What is the price of sharing?

34

Benchmarked script:

● Simulation script that generates collision

events

● Built with Xsuite

● Very heavy on GPU usage

● Low on memory accesses

● Low on CPU-GPU communication

Find more:
● Xsuite
● Benchmarked script

Environment:

● NVIDIA A100 40GB PCIe GPU

● Kubernetes version 1.22

● Cuda version utilized: 11.6

● Driver Version: 470.129.06

https://xsuite.readthedocs.io/en/latest/
https://gitlab.cern.ch/hep-benchmarks/hep-workloads-gpu/-/tree/master/lhc/simpletrack

35

Time-slicing Performance Analysis

Number of particles Shared x1
[seconds]

Expected Shared x2 = Shared x1 * 2
[seconds]

Actual Shared x2
[seconds]

Loss [%]

15 000 000 77.12 154.24 212.71 37.90

20 000 000 99.91 199.82 276.23 38.23

30 000 000 152.61 305.22 423.08 38.61

The GPU context switching (going from shared x1 to shared x2)

leads to a performance loss of ~38%.

36

Time-slicing Performance Analysis

Sharing the GPU between more processes (4, 8), doesn’t introduce

additional performance loss.

Number of
particles

Shared x2
[seconds]

Shared x4
[seconds]

Loss [%]

15 000 000 212.71 421.55 0

20 000 000 276.23 546.19 0

30 000 000 423.08 838.55 0

Number of
particles

Shared x4
[seconds]

Shared x8
[seconds]

Loss [%]

15 000 000 421.55 838.22 0

20 000 000 546.19 1087.99 0

30 000 000 838.55 1672.95 0

37

MIG Performance Analysis

38

MIG Performance Analysis

The theoretical loss of 9.25% can be seen experimentally.

Number of particles Whole GPU, no MIG
[seconds]

Whole GPU, with MIG (7g.40gb)
[seconds]

Loss [%]

5 000 000 26.365 28.732 8.97 %

10 000 000 51.135 55.930 9.37 %

15 000 000 76.374 83.184 8.91 %

39

MIG Performance Analysis

Number of particles 7g.40gb [s] 3g.20gb [s] 2g.10gb [s] 1g.5gb [s]

5 000 000 28.732 62.268 92.394 182.32

10 000 000 55.930 122.864 183.01 362.10

15 000 000 83.184 183.688 273.7 542.3

Number of particles 3g.20gb / 7g.40gb 2g.10gb / 3g.20gb 1g.5gb / 2g.10gb

5 000 000 2.16 1.48 1.97

10 000 000 2.19 1.48 1.97

15 000 000 2.20 1.48 1.98

ideal scale 7/3 = 2.33 3/2 = 1.5 2/1 = 2

The scaling between partitions converges to ideal values.

40

A note on monitoring
● Never underestimate the importance of the monitoring

infrastructure.
● Kubernetes makes monitoring easy (kube-prometheus-stack +

gpu-operator)

Find more:
● GPU Grafana Dashboard
● NVIDIA DCGM
● DCGM Field Identifiers

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/
https://developer.nvidia.com/dcgm
https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

41

Profiling the A100 compute pipeline utilization

dcgm-metrics.csv
...

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE, gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE, gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE, gauge, Ratio of cycles the fp16 pipes are active (in %).

42

Conclusions

1. Single Point of Access for GPUs is the way
a. This is still not enough if the use cases are not fully

utilising the GPU
2. There are multiple solutions to share a single GPU between

multiple users - but this comes with tradeoffs
a. Provide dedicated GPUs to use cases that fully utilize

the GPUs, to avoid performance losses
3. A combination of sharing at different infrastructure levels

is needed to gain optimal GPU usage.

43

Thank you!

