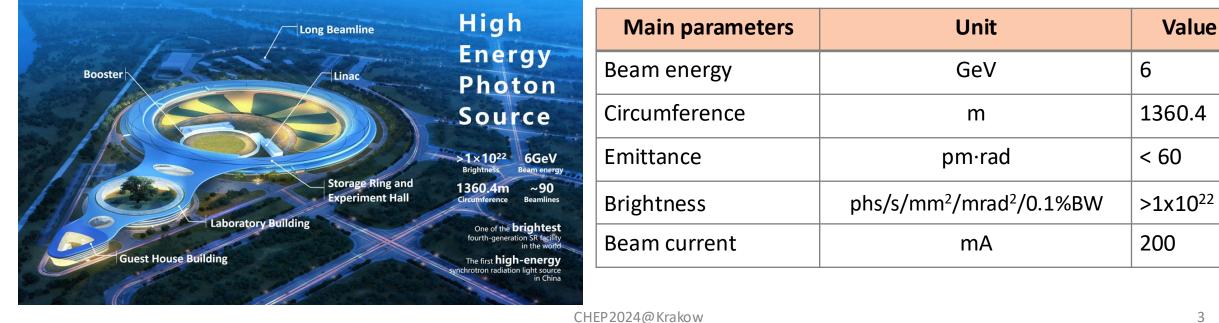
A RoCE-based network framework for science workloads

in HEPS data center

Shan Zeng, Tao Cui, Fazhi Qi on behalf of HEPS-CC Funded by NSFC (No. 12175258)

> zengshan@ihep.ac.cn 2024/10/23

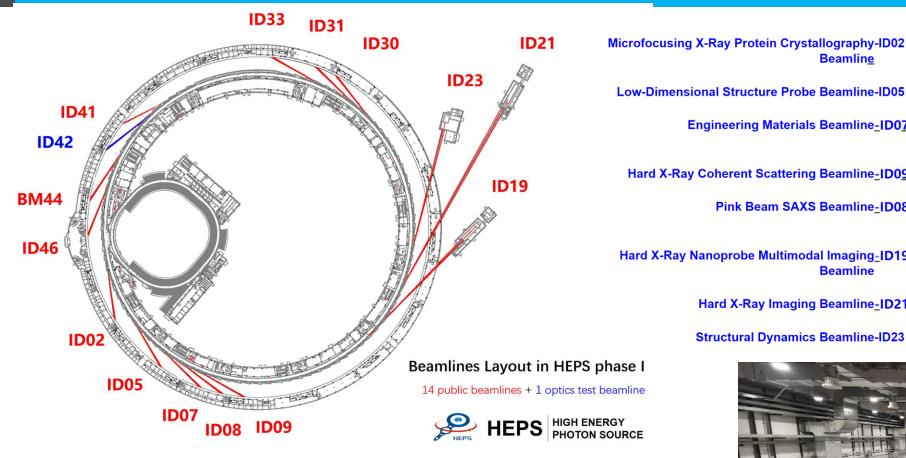
Outline

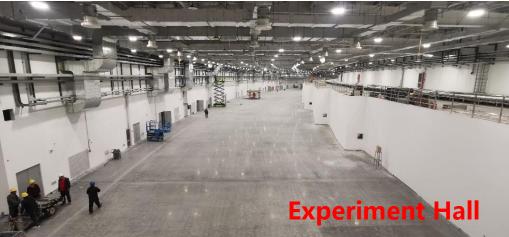

Introduction

- Network architecture design
- Running status
- Future plan
- Summary

Overview of HEPS

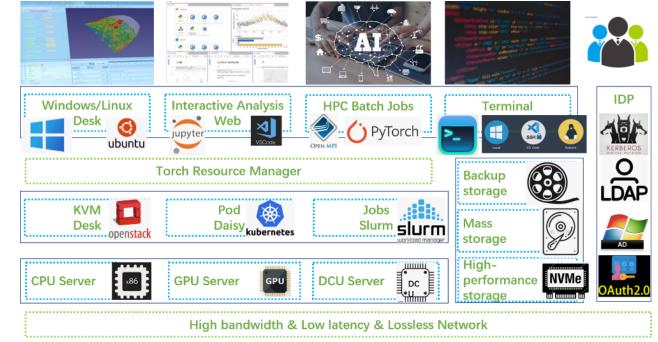
High Energy Photon Source (HEPS)


- The first 4th generation synchrotron in Asia: High energy, High brightness
- Located in Beijing about 80KM from IHEP
- Civil construction completed in 2022
- Expected to put into use in 2025


HEPS Beamlines in Phase I

14 public beamlines + 1 optics test beamline in Phase I Can accommodate over 90 beamlines in total

stallography-ID02 Beamlin <u>e</u>	ID30 <u>-</u> Transmission X-Ray Microscopic Beamline
be Beamline-ID05	ID31 <u>-</u> High Pressure Beamline
lls Beamline <u>-</u> ID0 <u>7</u>	ID33 <u>-</u> Hard X-Ray High Resolution Spectroscopy Beamline
ng Beamline <u>-ID09</u>	BM44 <u>-</u> Tender X-Ray Beamline
KS Beamline <u>-</u> ID08	ID41-High Resolution Nanoscale Electronic Structure Spectroscopy Beamline
odal Imaging <u>-</u> ID19 Beamline	ID42 <u>-</u> Optics Test Beamline
ng Beamline <u>-</u> ID21	ID46 <u>-</u> X-Ray Absorption Spectroscopy Beamline


HEPS Data Center

HEPS DC computer room space

- The total area is approximately 900 m². The main computer room is 530 m², the UPS room is 165 m², and the tape library is 155 m².
- The maximum planned layout is approximately 130 cabinet positions

HEPS computing platform was designed to satisfy the complex data analysis requirements in the field of synchrotron radiation

- Openstack
 - provide users with remote desktop access services
- Kubernetes
 - manages container clusters, and starts container images with multiple methodological software according to user analysis requirements
- Slurm
 - provide HPC computing services and meet offline data analysis need

See Hu Qingbao's talk

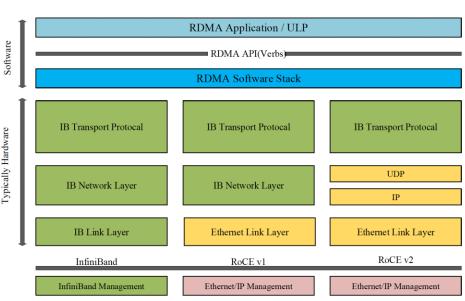
HEPS Data Center Network Challenges

During phase I, HEPS will produce more than 300PB/year of raw data, requiring high performance in network to assure data moving and analysis

- High bandwidth
- Lower latency

Al applications will be deployed in some beamlines, requiring lossless feature in network

Different construction phases have different numbers of beamlines, requiring the network to provide expandable capabilities

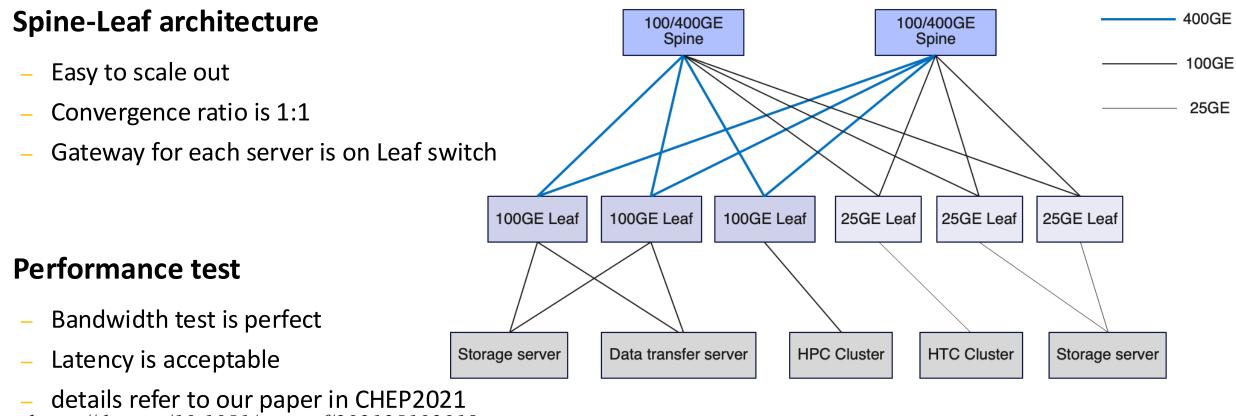

As a remote site of IHEP, to reduce labor costs, intelligent operation and maintenance is also a key issue that needs to be considered.

RDMA technologies: RoCE vs IB

RDMA is a technology that allows servers in a network to exchange data in main memory without involving the processor, cache or operating system of either server, which can provide high bandwidth and low latency
Cutter defined by the EELER

IB stands for InfiniBand. It is a high-performance computer networking technology used in data centers and high-performance computing environments. It offers low latency and high bandwidth for applications that require fast data transfer and communication between servers and storage systems

RoCE is a network protocol defined in the InfiniBand Trade Association (IBTA) standard, allowing RDMA over converged Ethernet network. Shortly, it can be regarded as the application of RDMA technology in hyper-converged data centers, cloud, storage, and virtualized environments.


Underlying ISO Stacks of the Flavors of RDMA

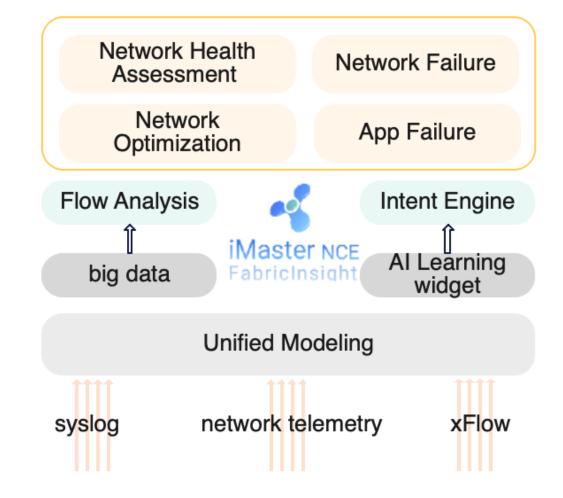
	Performance	Cost	Scalability	Compatibility
RoCE	Higher latency especially in large scales	Lower	Performance may be affected in large scales	can be integrated with existing Ethernet networks, easier to deploy
IB	lower latency	Higher	can support thousands of nodes	requires a dedicated network

Network Architecture Design

Concerning about the scale, cost and compatibility, we designed a RoCE-based DC network

Support the mixed running of RoCE and traditional TCP

https://doi.org/10.1051/epjconf/202125102018


Network Monitoring

What we concerned

- When failures happened?
- What kinds of failure they are?
- How we can handle/optimize them?

Monitoring technologies

- Network data capture technology
 - syslog
 - network telemetry
 - xFlow
- Create an intelligent brain to analyze the big data
 - Flow analysis
 - AI learning to produce an intent engine
- Provide a network monitoring service
 - Network health assessment
 - Network failures report
 - Application failures report
 - Network optimization suggestions

Running Status

The HEPS Data Center Network was put into use in October 2023, and has been running stably

Online devices

- 8 switches, 697 ports, 339 optical modules
- Provide 10G/25G/100G/400G access abilities

Monitoring Statistics

	\Box	设备名称	│设备IP	│ CPU利用率(平均值) ↑↓		│内存利用率(平均值) ↑↓	
\sim	\Box	Leaf_34_8851	10.5.254.106	_	24.97%		42.00%
~	Ο	Leaf_32_CE6865E	10.5.254.122	_	24.33%		43.23%
\sim	\Box	Leaf_13_FM8850	10.5.254.22	_	23.00%		41.00%
\sim		Leaf-ZK-8851	10.5.254.114	_	21.83%		43.00%
\sim		Leaf_12_FM8850	10.5.254.14	-	16.80%		41.00%
~		Spine-02	10.0.5.12	-	11.37%	-	10.63%
\sim		Spine-01	10.0.5.11	•	11.30%	-	10.53%

Top 10单板MAC表项利用率

设备名称	单板名称	MAC表项利用率
Leaf_32_CE6865E	CE6865E-48S8CQ 1	<u>0.2%</u>
Leaf_12_FM8850	FM8850-64CQ-El 1	<u>0.15%</u>
Leaf_13_FM8850	FM8850–64CQ–El 1	<u>0.12%</u>
Leaf_34_8851	CE8851-32CQ8DQ-P 1	<u>0.016%</u>
Leaf–ZK–8851	CE8851-32CQ8DQ-P 1	<u><0.01%</u>
Spine-01	CE9860-4C-El 1	0%

Top10 MAC table usage

队列ID

4

4

4

4

4

/	5 5							
	接口名称	│ ECN报文数(累计值) 1↓		\Box	していたのでは、「」では、「」では、「」では、「」では、「」では、「」では、「」では、「」	│设备IP	单板名称	接口名称
4	100GE1/0/1	0	~	Ο	Leaf_13_FM8850	10.5.254.22	FM8850-64CQ-EI 1	100GE1/0/1
4	100GE1/0/10	0	~		Leaf_12_FM8850	10.5.254.14	FM8850-64CQ-EI 1	100GE1/0/4
4	100GE1/0/11	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/1
4	100GE1/0/12	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/2
4	100GE1/0/13	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/3
4	100GE1/0/14	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/4
4	100GE1/0/15	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/5
4	100GE1/0/16	0			Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/6
4	100GE1/0/17	0	<u> </u>			10.5.254.122	CE0000E-4000CQ 1	100GE1/0/0
4	100GE1/0/18	0	~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/7
feac	h Port		~		Leaf_32_CE6865E	10.5.254.122	CE6865E-48S8CQ 1	100GE1/0/8

PFC count of each RoCE Queue

CPU/Memory usage of switches

	\Box	│设备名称	│设备IP	接口名称	ECN报文数(累计值
\sim	\Box	Leaf_12_FM8850	10.5.254.14	100GE1/0/1	0
0 ~		Leaf_12_FM8850	10.5.254.14	100GE1/0/10	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/11	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/12	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/13	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/14	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/15	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/16	0
\sim		Leaf_12_FM8850	10.5.254.14	100GE1/0/17	0
~		Leaf_12_FM8850	10.5.254.14	100GE1/0/18	0

ECN count of each Port

接收PFC反压帧数速率(最新值) ↑↓

3pps

2pps

0pps

0pps

0pps

0pps

0pps

0pps

0pps

0pps

Future Plan

More switches will be added for providing the access ability of 25GE/100GE nodes

Automatically alarm of data center network problems will be developed

Monitoring data will be considered to be called by 3rd party applications through RESTful API to develop more fancy monitoring dashboard

Summary

- HEPS data center network is designed based on RoCE
- It works fine since it launched in October 2023
- More services will be in production, and we will keep a close eye on the network performance and monitoring metrics
- Any suggestions and cooperation are welcomed

Thanks for your attentions

Questions, Comments, Suggestions?