
The kube-multitenancy architecture enhances Kubernetes for multi-tenancy
management. It comprises three key webhooks:

● kube-mt-authn: validates user identities for secure resource access (OIDC or Keystone)
● kube-mt-authz: enforces access policies to regulate user actions within the namespace
● kube-mt-admission: enables admission control, customizing resource requests based on

predefined rules.

https://baltig.infn.it/zangrand/kube-multitenancy

The CloudVeneto’s Container-as-a-Service ecosystemThe CloudVeneto’s Container-as-a-Service ecosystem

Unlike Kubernetes-as-a-Service (KaaS), where users have to manage their own clusters, the
Container-as-a-Service (CaaS) model offers a fully centrally managed orchestration platform in
the cloud. Users can simply run their Linux containers to the cloud provider, and they don't
have to deal with administrative tasks. Our CaaS solution, built on Kubernetes, combines
simplicity with user control over private cloud resources. We provide a centralized Kubernetes
Control Plane without worker nodes by design, allowing users to create and customize nodes
using resources from CloudVeneto within their OpenStack projects. These nodes, deployed as
VMs, are fully integrated into the cluster. Users have the flexibility to keep nodes private or
share them within the project (namespace), maintaining control while delegating deployment
and monitoring tasks to CaaS, thereby easing administrative burdens.

Our Container-as-a-Service solution

As part of the innovative CloudVeneto framework, we have developed an advanced Container-as-a-Service (CaaS) tailored for different research areas. Our aim
is to provide a secure, centrally managed Kubernetes service, alleviating users from administrative burdens and optimizing the use of Cloud resources. Our
solution effectively meets the requirements of user communities like Quantum, Isolpharm, and SPES, showcasing its adaptability within the CloudVeneto
ecosystem. Moreover, we've demonstrated the ability to offload workload from remote Kubernetes clusters to our CaaS service using the interLink
implementation, which extends the Virtual Kubelet concept.

F. Fanzago, M. Sgaravatto, S. Traldi, A. Troja, M. Verlato, L. Zangrando – INFN-PD
D. Lupu, D. Marcato – INFN-LNL

While Kubernetes inherently supports multi-tenancy, there are several
challenges in achieving strict isolation at both the user and node
levels. Users within the same namespace may impact each other, and
running pods on shared nodes can pose security and performance
risks. To mitigate these issues, we enhanced the Kubernetes security
layer by introducing resource ownership concepts and implementing
automated pod placement on dedicated nodes based on predefined
policies. This ensures that users can only operate on their own
resources and have the flexibility to choose whether to deploy their
pods on private or shared nodes within their namespace.

kube-multitenancy

Moreover our architecture enables administrators to
deploy nodes on bare-metal and dynamically scale up to
handle workload spikes using cloud resources.

Quantum Computing Radiopharmaceutical research

Offloading

CaaS has significantly improved the
accessibility of CloudVeneto resources for
projects such as SPES and ISOLPHARM. It
has simplified tasks such as deploying and
configuring Kubernetes clusters, allowing
researchers to efficiently run Monte Carlo
simulations for radiological exposure
assessments or assessing Ag111 production within the SPES facility. CaaS
enabled the parallel execution of complex simulations, generating a
considerable number of events in a short amount of time.

The "Quantum Computing and Simulation Center" (QCSC) project
utilizes our CaaS service to execute quantum circuits within
CloudVeneto. QCSC has developed the QuantumTEA cloud platform,
seamlessly integrated into the CloudVeneto ecosystem. This
platform empowers Unipd students to delve into quantum
computing, enabling them to define and run their own circuits
effortlessly using Qiskit, without requiring specific knowledge of the
underlying architecture.

Offloading allows the execution of containerized code across distributed and heterogeneous
computational environments, leveraging specialized hardware from remote computing centers.
Referring to the interLink implementation in the interTwin project, the key components are:
● cluster Kubernetes with a Virtual Kubelet (VK): VK acts as a 'virtual node' which distributes of user workflows on

external resources.
● interLink-API: it serves as a bridge between the VK and remote resources.
● interLink-sidecar: it receives REST API calls from interLink-API, translating them into commands specific to local

resources for user payload execution.

To interact with our CaaS, we developed a custom interLink sidecar. It incorporates a Flask server and translates the calls into K8s commands, to be executed
and managed on CaaS nodes. We have validated this solution through two primary use cases: the CMS High Rate Analysis Facility and the AI-INFN platform.

From an analysis facility users can create a dask cluster within HTCondor nodes deployed through offloading.

User belongs to project A

create node

node requirements are
described with yaml

 Project A quota

 create VM

as specified by the
user (flavor)

instantiate VM

using the project’s
quota

The node joins the cluster on startup, then it is configured by the Control-Plane

The Control-Plane in HA (3 nodes)

kube-mt-authn
Keystone and OIDC

kube-mt-authz

User level isolation
kube-mt-admission

Modifies user requests

RBAC

Data plane
Worker nodes consume projects quotas

K8s master node

Virtual Machine
k8s node Project A

K8s master node

K8s master node

Data plane
Worker nodes on bare-metal

Control plane
3 K8s master nodes + Harbor
High Availability: HAProxy + Keepalived

Harbor registry Project B

Partition 1

Partition 2

Virtual Machine
k8s node

Virtual Machine
k8s node

Physical host
k8s node

Physical host
k8s node

Physical host
k8s node

	Slide 1

