Enhancing Network Analytics through Machine Learning

CHEP'24, 19–25 Oct 2024 Krakow, Poland

Petya Vasileva / U Michigan, **Marian Babik** / CERN **Shawn McKee** / U Michigan, **Ilija Vukotic** / U Chicago

The perfSonar platform

perfSONAR continuously **measures** network performance metrics like **bandwidth, latency, packet loss, across various network paths** that are crucial for **OSG** and **WLCG** operations

The goal is to **proactively discover network issues**

How to correlate network metrics?

Tests' rate of execution varies by type

many paths, few bandwidth tests

traceroute test every 10 min

throughput test every 6-24 hours

2001:630:0:9011::189

Trends on routers

Each **point** represents the throughput values collected when the node was on the path

Simplified example of traceroute data

Challenges

Path from JINR-T1-LHCOPNE to BEIJING-LCG2

To build **reliable topology** models for identifying weak points on the network, we need to **reconstruct the paths**

What is the most probable C, given it's between A and B?

Possible intermediates: r237 P(AtoC)= 0.008 and P(CtoB)= 0.038 r265 $P(AtoC) = 0.056$ and $P(CtoB) = 0.009$ r536 $P(A \text{toC}) = 0.176$ and $P(C \text{toB}) = 0.551$ r792 $P(AtoC) = 0.072$ and $P(CtoB) = 0.008$ r838 P(AtoC)= 0.008 and P(CtoB)= 0.01 The most probable intermediate router between r792 and r237 is r536 with a probability of 0.097

There are multiple possibilities for C. What is the correct node that lies between A and B depends more on the surrounding nodes rather than on highest probability value

Site to site path signature

Unknown IP

Each color is a different IP

TTL (Hop Number)

Destination Reached

hops_hash) (ttls-Path Identifier

If our eyes can **intuitively spot** these **gaps**, could we **teach a model** to do the same - only **faster, at scale, and with consistent accuracy**?

How about a Transformer model?

Corner cases

Dataset v1 Collapsed unknowns

Attention mask and loss confidence

Attention mask

Helps the model focus more on known and reliable nodes when processing sequences, while still considering the presence of uncertain or unknown nodes

```
# Training phase
```
for input batch, mask batch, target batch, confidence batch in train loader: optimizer.zero grad()

```
input batch = input batch.to(device)
target batch = target batch.to(device)
confidence_batch = confidence_batch_to(device)
```
Forward pass outputs = $model$ (input batch, src mask=confidence batch)

```
# Compute loss
loss = custom loss function(outputs, target batch, confidence batch, input batch)
loss.backward()
optimizer.step()
```

```
total_train_loss += loss.item()
```
Custom loss

Tokens with higher confidence contribute more to the overall loss

```
def custom_loss_function(outputs, target_batch, confidence_batch, input_batch):
   input lengths = (input batch != 0).sum(dim=1) # Shape: (batch size, )
```

```
# Get the logits at the last non-padded positions
last outputs = outputs [range(outputs.size(0)), input lengths - 1] # Shape: (batch size, vocab size)
```
Get the confidence scores for the last non-padded tokens confidence = confidence_batch[range(confidence_batch.size(0)), input_lengths - 1] # Shape: (batch_size,)

```
loss fn = nn. CrossEntropyLoss(reduction='none') # We need element-wise loss
loss = loss_fn(last_outputs, target_batch) # Shape: (batch_size,)
```

```
# Apply confidence scores: scale the loss by the confidence score for each sequence
weighted_loss = loss * confidence # Shape: (batch_size,)
```

```
return weighted loss.mean()
```
Transformer model

work in progress

Transformer architecture

Node imputation through self-validation

path	$r1$	\Rightarrow	$r2$	\Rightarrow	$r10$	\Rightarrow	$r14$				
1) Input:	$r1$	\Rightarrow	$r2$	\Rightarrow	$r10$	\Rightarrow	$r12$	\Rightarrow			
2) Input:	$r1$	\Rightarrow	$r2$	\Rightarrow	$r10$	\Rightarrow	$r12$	\Rightarrow	$r14$	1	$r26$
Accept	Don't accept	imputation									

Next steps

- Use AutoML tools to finetune the model
- Introduce time dimension
- Implement other models to compare the results
- Deploy the best model and define incremental learning

Once the **topology** is **fixed**, we can proceed by building more **complex models** that incorporate other metrics such as **loss, bandwidth** or **file transfer** statistics

Acknowledgements

We would like to thank the **WLCG**, **HEPiX**, **perfSONAR** and **OSG** organizations for their

work on the topics presented. In addition we want to explicitly acknowledge the support of the **National Science Foundation** which supported this work via:

- OSG: NSF MPS-1148698
- IRIS-HEP: NSF OAC-1836650

Thank you!

Any questions?

Contact us: @ net-discuss@umich.edu Contact me: @ petyav@umich.edu

Backup slides

Correlate network tests

Additional information

Number of paths: 28'444 Vocabulary size: 2'193 Input data shape: (274'997, 30)

Training on 2x NVIDIA GeForce GTX 1080 Ti