Enhancing Network Analytics through Machine Learning

CHEP'24, 19–25 Oct 2024 Krakow, Poland Petya Vasileva / U Michigan, Marian Babik / CERN Shawn McKee / U Michigan, Ilija Vukotic / U Chicago

The perfSonar platform

perfSONAR continuously **measures** network performance metrics like **bandwidth**, **latency**, **packet loss**, **across various network paths** that are crucial for **OSG** and **WLCG** operations

The goal is to proactively discover network issues

How to correlate network metrics?

Tests' rate of execution varies by type

many paths, few bandwidth tests

traceroute test every 10 min

throughput test every 6-24 hours

Trends on routers

2001:630:0:9011::189

Each **point** represents the throughput values collected when the node was on the path

Simplified example of traceroute data

	\downarrow timestamp \checkmark	k src_host v	k dest_host	~	k hops	~	# asns ~
2 🔾	Oct 22, 2024 @ 17:54:47.000	perfsonar- bandwidth.esc.qmul.ac.uk	btw-lat.t1.grid.kiae.ru		[2a01:56c1:10:1000::1, 2a01:56c0:a020:1::1, 2001:630:0:9001:10::29, 2001:630:0:10::251, 2001:630:0:10::1cd, 2001:630:0:10::1c9,		[198864, 198864, 786, 786, 786, 786, 20965, 20965, 20965, 20965, 20965, 59624, 59624]
2 🔘	Oct 22, 2024 @ 17:54:47.000	ccperfsonar1.in2p3.fr	perfsonar-grid.uaic.ro		[193.48.99.100, 192.70.69.153, 193.51.187.137, 193.55.204.196, 62.40.124.61, 62.40.98.77, 62.40.98.182, 62.40.98.159, 62.40.98.53,		[2200, 2200, 2200, 2200, 20965, 20965, 20965, 20965, 20965, 20965, 20965, 20965, 2614, 2614, 2614, 2614]
2 🔾	Oct 22, 2024 @ 17:54:47.000	ps02-b.farm.particle.cz	clrperf-owamp.in2p3.fr		[147.231.25.253, 195.113.179.105, 62.40.126.254, 62.40.126.254, 62.40.98.52, 62.40.98.158, 62.40.98.183, 62.40.98.239, 62.40.126.26,		[2852, 2852, 20965, 20965, 20965, 20965, 20965, 20965, 20965]
2 🗌	Oct 22, 2024 @ 17:54:47.000	perfsonar- bandwidth.esc.qmul.ac.uk	hepsonar1.ph.liv.ac.uk		[194.36.11.1, 138.37.0.79, 146.97.143.217, 146.97.35.233, 146.97.33.22, 146.97.33.42, 146.97.35.46, 146.97.78.33, 146.97.78.38,		[198864, 198864, 786, 786, 786, 786, 786, 786, 786, 786
2 🔾	Oct 22, 2024 @ 17:54:47.000	t2ps- bandwidth2.physics.ox.ac.u k	perfsonar02.hep.wisc.edu		[163.1.5.254, 172.24.73.38, 172.31.4.242, 193.63.109.41, 193.63.108.69, 146.97.37.193, 146.97.33.1, 62.40.124.197, 62.40.125.18,		[786, 0, 0, 786, 786, 786, 786, 20965, 20965, 0, 0, 0, 0, 59, 59]

Challenges

Path from JINR-T1-LHCOPNE to BEIJING-LCG2

To build **reliable topology** models for identifying weak points on the network, we need to **reconstruct the paths**

What is the most probable C, given it's between A and B?

Possible intermediates: r237 P(AtoC)= 0.008 and P(CtoB)= 0.038 r265 P(AtoC)= 0.056 and P(CtoB)= 0.009 r536 P(AtoC)= 0.176 and P(CtoB)= 0.551 r792 P(AtoC)= 0.072 and P(CtoB)= 0.008 r838 P(AtoC)= 0.008 and P(CtoB)= 0.01 The most probable intermediate router between r792 and r237 is r536 with a probability of 0.097

There are multiple possibilities for C. What is the correct node that lies between A and B depends more on the surrounding nodes rather than on highest probability value

Site to site path signature

Unknown IP

Each color is a different IP

TTL (Hop Number)

hops_hash) (ttls-Path Identifier

If our eyes can **intuitively spot** these **gaps**, could we **teach a model** to do the same - only **faster**, **at scale, and with consistent accuracy**?

How about a Transformer model?

Corner cases

Dataset v1 Collapsed unknowns

Attention mask and loss confidence

Attention mask

Helps the model focus more on known and reliable nodes when processing sequences, while still considering the presence of uncertain or unknown nodes

```
# Training phase
```

for input_batch, mask_batch, target_batch, confidence_batch in train_loader:
 optimizer.zero_grad()

```
input_batch = input_batch.to(device)
target_batch = target_batch.to(device)
confidence_batch = confidence_batch.to(device)
```

Forward pass
outputs = model(input_batch, src_mask=confidence_batch)

```
# Compute loss
loss = custom_loss_function(outputs, target_batch, confidence_batch, input_batch)
loss.backward()
optimizer.step()
```

```
total_train_loss += loss.item()
```

Custom loss

Tokens with higher confidence contribute more to the overall loss

```
def custom_loss_function(outputs, target_batch, confidence_batch, input_batch):
    input_lengths = (input_batch != 0).sum(dim=1) # Shape: (batch_size,)
    # Get the logits at the last non-padded positions
```

```
last_outputs = outputs[range(outputs.size(0)), input_lengths - 1] # Shape: (batch_size, vocab_size)
```

```
# Get the confidence scores for the last non-padded tokens
confidence = confidence_batch[range(confidence_batch.size(0)), input_lengths - 1] # Shape: (batch_size,)
```

```
loss_fn = nn.CrossEntropyLoss(reduction='none') # We need element-wise loss
loss = loss_fn(last_outputs, target_batch) # Shape: (batch_size,)
```

```
# Apply confidence scores: scale the loss by the confidence score for each sequence
weighted_loss = loss * confidence # Shape: (batch_size,)
```

```
return weighted_loss.mean()
```

Transformer model

work in progress

Confidence mask

Path signature between FR-ALPAMED-CPPM and JINR-LCG2

Transformer architecture

Node imputation through self-validation

path
$$r1 \Rightarrow r2 \Rightarrow r10 \Rightarrow r14$$

1) Input: $r1 \Rightarrow r2 \Rightarrow r10$ Predicted: $r12$ Predicted:
2) Input: $r1 \Rightarrow r2 \Rightarrow r10 \Rightarrow r12$ $r12$ $r14$ $r26$
Accept imputation

Next steps

- Use AutoML tools to finetune the model
- Introduce time dimension
- Implement other models to compare the results
- Deploy the best model and define incremental learning

Once the **topology** is **fixed**, we can proceed by building more **complex models** that incorporate other metrics such as **loss**, **bandwidth** or **file transfer** statistics

Acknowledgements

We would like to thank the WLCG, HEPiX, perfSONAR and OSG organizations for their work on the topics presented.

In addition we want to explicitly acknowledge the support of the **National Science Foundation** which supported this work via:

- OSG: NSF MPS-1148698
- IRIS-HEP: NSF OAC-1836650

Thank you!

Any questions?

Contact us: @ net-discuss@umich.edu Contact me: @ petyav@umich.edu

Correlate network tests

Additional information

Number of paths: 28'444 Vocabulary size: 2'193 Input data shape: (274'997, 30)

Training on 2x NVIDIA GeForce GTX 1080 Ti