
TeRABIT Missione 4 ● Istruzione e Ricerca

AI-based approach for provider selection in the INDIGO PaaS
Orchestration system of INFN Cloud

Conference on Computing in High Energy and Nuclear Physics (CHEP 2024) – Krakow (Poland) | 19-25 Oct 2024

Luca Giommi – INFN CNAF
A. Costantini, E. Vianello (speaker) – INFN CNAF
F. Debiase, M. Antonacci, G. Savarese , G. Vino, G. Donvito – INFN Bari

Backbone
~ 2000 vCPU
~ 15 TB RAM
~ 1.6 PB Storage (RAW)
> 600 TB Storage net,
~ 10% SSD, ~ 320 TB for
object storage

Federated Clouds
~ 3100 vCPU
~ 15 TB RAM
~ 400 TB Storage net

The INFN Cloud infrastructure

INFN decided to implement a national Cloud computing
infrastructure for research

Ø as a federation of existing distributed
infrastructures

Ø as an “user-centric” infrastructure which makes
available to the final users a dynamic set of
services tailored on specific use cases

Ø leveraging the outcomes of several national and
European cloud projects where INFN actively
participated, e.g. INDIGO DataCloud

INFN Cloud was officially made available to users in March
2021

The federative middleware of INFN Cloud is based on the
INDIGO PaaS orchestration system, consisting of
interconnected open-source microservices

Ø The Orchestrator receives high-level deployment
requests in the form of TOSCA templates and
coordinates the process of creating deployments

Ø The Orchestrator interacts with the provider
services through the Infrastructure Manager (IM)
for deploying complex and customized virtual
infrastructures on the IaaS platforms made
available by the federated providers

e.g. Notebook as a Service, INFN Cloud Registry

e.g. Virtual Machine, Docker compose

e.g. Start & Stop, Hostname choice

INFN Cloud IAM

Identification of data sources

Problem to address and solution with the use of Artificial Intelligence

In the default configuration, the Orchestrator determines the provider where to submit the deployment creation request starting from an ordered list of providers, selected according to the
group the user belongs to. This list is provided by the Cloud Provider Ranker (CPR) service which applies a ranking algorithm using a restricted set of metrics relating to the deployments
and Service Level Agreements (SLAs) defined for the providers. Then the Orchestrator submits the request to the first provider in the list and in case of failure it scales to the next provider
until the list is exhausted. Our work aims to improve the ranking system by identifying and using more appropriate info/metrics with an approach based on Artificial Intelligence.

Monitoring: info about resource usage per group and provider
over time

Accounting: aggregated info in time slots about resource usage
per group and provider
Orchestrator DB: info about not deleted deployments

Static info: badwidth, overbooking, etc

Orchestrator logs: info about the history of all deployments

Orchestrator Dashboard DB: info about all deployments

Tests in Opensearch: info about simple tests (e.g. VM
creation) done on the providers

Machine Learning workflow

1) Identification of data sources

2) Identification of features

3) Data collection and dataset creation: associate

info from each source with each deployment

4) Data exploration

5) Data cleaning

6) Data transformation and feature engineering

7) Model and training design

8) Performance evaluation

Results and future directions

Ø 6 months of data used: 08.2023 – 01.2024, 643 entries (very few!)
Ø Different entries associated to different service deployments/templates:

tried grouping them according to their complexity
Ø Reduction in the number of features through data cleaning and feature

engineering, e.g. ram_diff = (quota_ram – ram_used) – requested_ram
Ø Finally used 11 features

Ø Two models to create: classification for success/failure
of a deployment, regression for creation/failure time of
a deployment

Ø Defined training procedure using data of recent and
sliding time windows with fixed size

Ø Classification: compared different models (Neural
Network, Decision Tree, Random Forest, XGBoost,
AdaBoost) with parameter tuning. Best Random Forest

Ø For the regression part still room for improvements

Simple services

Ranking Feature Importance
1 ram_diff 0.162
2 cpu_diff 0.147
3 failure_percentage 0.146
4 avg_deployment_time 0.120
5 storage_diff 0.114

What’s next?
Ø Trying to improve the results (especially for regression) by creating a better dataset: more

statistics, balanced dataset and better definition of failures
Ø Automatizing data collection and redesigning the CPR service through an online-learned model
Ø Plans for exploring Reinforcement Learning techniques

