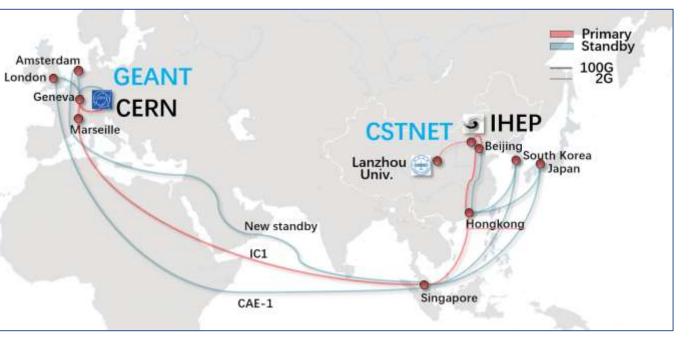


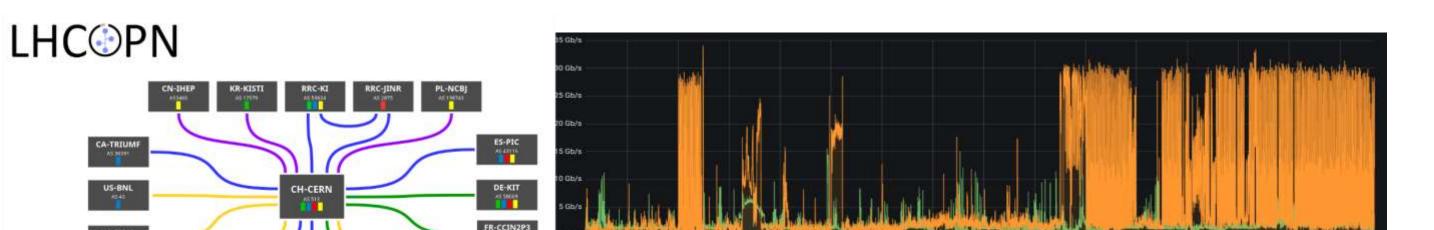
Research of Wide Area Network Performance Anomaly Detection

Technology Based on Machine Learning

Shan Zeng^{1,2}, Cheng Li^{1,2} on behalf of IHEP network group ¹Institute of High Energy Physics ²University of Chinese Academy of Sciences

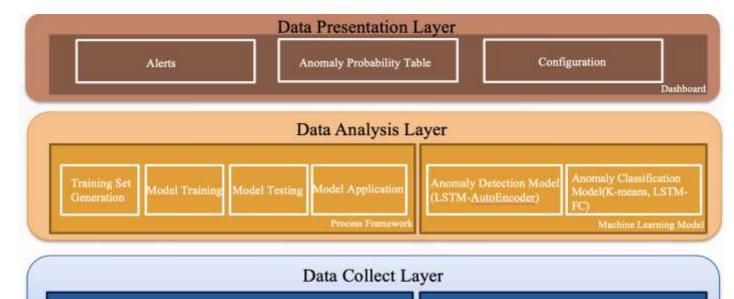
Introduction

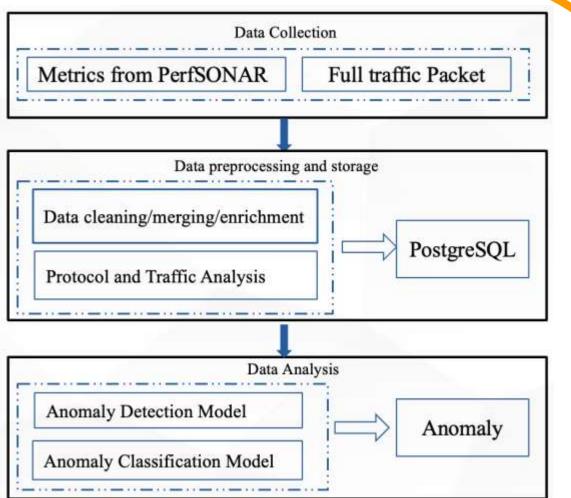

IHEP endorsed as a new WLCG Tier-1 site (June,2024), WAN bandwidth was upgraded from 40Gbps to 100Gbp


► LHCOPN@IHEP

- 20Gbps bandwidth guaranteed
- 3 links redundancy
- ~ 200ms latency

► LHCONE@IHEP


• 100Gbps bandwidth shared



How we did?

- > Data cleaning to remove invalid data
- Data merging to merge perfSONAR metrics and traffic packet
- Data enrichment to enrich the institute name and its nodes
- PostgreSQL for storage
- > ML model for analyzing
 - Anomaly detection
 - Anomaly classification

Data Collect Layer

- Collect perfSONAR metrics data through Esmond API
- Analyze the JSON data return from Esmond, after data cleaning, merge with the traffic packet data
- Enriching the data with institution information

- Many network challenges from daily network operation
- Issue debugging is difficult and time-consuming
- How to thoroughly and vividly demonstrate various network measurement results to the application
- > How to promptly detect and resolve the network issues

Network performance R&D is essential in view of HL-LHC

Effective network usage and prompt detection as well as resolution of any network issues need to be guaranteed

Reports from CHEP/HEPiX/LHCOPN-LHCONE meeting

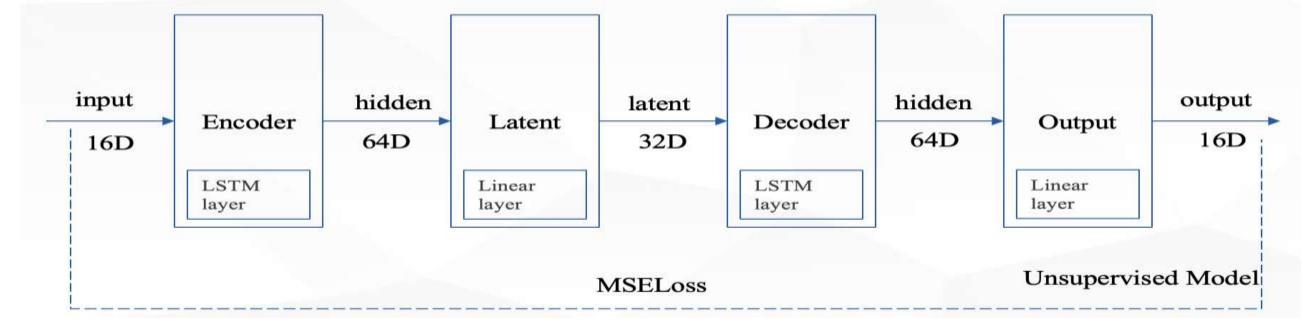
Shawn: Analyzing, Identifying & Alerting on Network Issues[1]
 Petya: perfSONAR Network Analytics through Machine Learning[2]

The network performance needs to be closely monitored and evaluated Network analytics R&D is essential for providing high quality network services Machine learning methods seem well-suited to solving these types of problems

Data Analysis Layer

- Anomaly detection model(based on LSTM-AutoEncoder)
- Anomaly detection model(based on Kmeans&LSTM-FC)
- Install them in the data warehouse: PostgreSQL

Data Presentation Layer


- Provide interface to other systems/platforms
- Provide configuration dashboard to administrators

Anomaly detection model

LSTM autoencoder model was designed

The reconstruction loss is first computed using the autoencoder. If the reconstruction loss is large, the data is considered to be anomalous

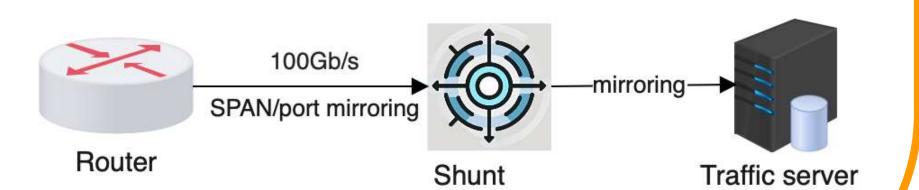
Column	Type		
timestamp_unix	bigint		
src_ip	text		
dst_ip	text		
src_port	integer		
dst_port	integer		
perfsonar_src_ip	text		
perfsonar_dst_ip	text		
protocol	text		
packet_size	integer		
ttl	integer		
dscp	integer		
window_size	integer		
bandwidth_utilization latency	<pre>double precision numeric[]</pre>		
packet_loss_rate	double precision		
<pre>src_organization_domain</pre>	text		
dst_organization_domain	text		
anomaly_type	text		

Related works

Active measurement of network performance

perfSONAR

>IHEP perfSONAR upgraded to the latest version: v5.1.3

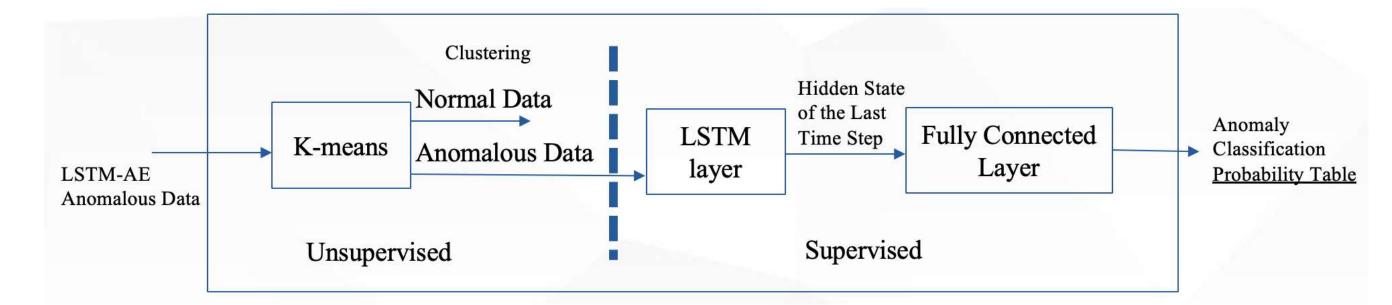

IHEP WAN traffic are captured and stored in local file system

	perfsonar.ihep.a	ic.cn		Home Configuration	7 Help
Throughput (Max	1)				
4.06 Gt	o/s	Packet Los	s (Max)	Jitter (Max)	
Number of Tests Run					
6000					
4000			J. J.		
		erad Sente (c. 1	28 // # 6 //		
0 06/31 06/02 09/04 0	9/DB 09/08 09/10 09/1			10/20 C9/22 C9/24 CD/26 (20/28
	Tveo onen acveo acveo			19/20 09/22 09/24 08/26 (26/28
0 08/31 08/12 09/04 0 - trace - throughput	Destination	2 09/14 0		79/20 09/22 09/24 08/26 (Throughput (Min) Late	
o osvat osvaz osvo4 o – trace – throughput Test Result Summary		2 09/14 0	19/18 OQ/18 (rtt (M
o os/31 os/02 os/04 o = trace = throughput Test Result Summary Source	Destination	2 09/14 0 IP-Ve	19/18 OQ/18 (Throughput (Min) Late 219 Mb/s nu l1	rtt (M
o osrat osrtiz ogroa o e trace e troughout Test Result Summary Source psonaril final gov	Destination perfsonar.ihep.ac.cn	2 09/14 0 IP-Ve 6	Packet Loss	Throughput (Min) Late 219 Mb/s nu 1 46.9 Mb/s nu 1	r RTT(M L null
o osiai oauz paroa o = trace = throughput Test Result Summary Source psonar1.fnal.gov psb01-gva.com.cb	Destination perfisonar.ihep.ac.cn perfisonar.ihep.ac.cn	2 09/14 0 IP-Ve 6 4	Packet Loss	Throughput (Min) Late 219 Mb/s null 46.9 Mb/s null 252 Mb/s null	r RTT (M L null L null

100%

Full traffic packet captured, in case of issue omitted

- Captured by tcpdump, stored as .cap file
- every 10 minutes a file, data volume is 1.4TB-7TB per day
- In-depth understanding of the network communication
 - Establish connection, data transmission, release connection ...
- Find out the root cause of problems during communication between applications


Encoder: The LSTM processes information at each Latent Layer: It compresses the hidden time step and encodes it into a 64-dimensional state into a lower-dimensional latent space vector

Decoder: This layer decodes the latent vector back to the input sequence shape

vector Output Layer: It transforms the decoder's hidden state into a reconstruction sequence matching the original input dimensions

Anomaly classification model

K-means and LSTM model was designed

- To identify previously undiscovered types of anomalies, the K-means algorithm is used to cluster the anomalous data
- A fully connected layer is utilized to determine the specific categories of the anomalous data

Workflow

psi01-gva.cem.ch	perfsonar2.ihep.ac.cn	16.0%	126 mil	null
psi01-gva.com.ch	perfsonar2.lhep.ac.cn	18.7%	128 ms	null
picperfsonar-latency pic	perfsonar2.ihep.ac.cn	18:356	141 ms	null

Architecture design

What we get?

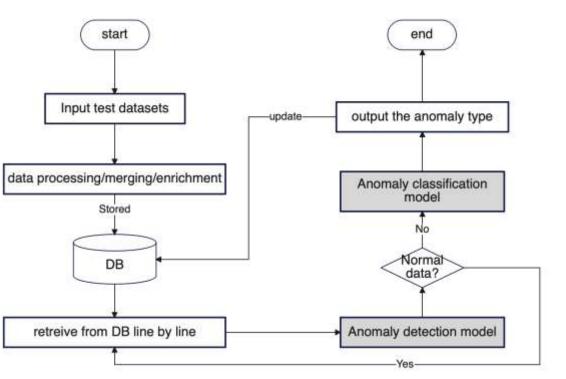
Derf5. NAR on perfsonar2.ihep.ac.cn

- WAN performance monitoring metrics from perfSONAR
- WAN full traffic packet by mirroring

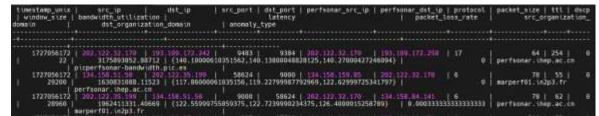
Home Configuration

Jitter (Max)

2.37 s


What we want?

- Find network anomalies when exist
- highlight the time periods of these anomalies
- provide a classification table of anomaly types
- Identify the anomaly classification and the time it occurs


Step1: Train the ML models using the training dataset

Step2: Tuning the model parameters to make sure the ML model is ready

Step3: Testing started...

- Done: Table created, metrics inserted via Python, parallel processes for dataset creation, LSTM-AE anomaly detection model developed
- To Do: Fix missing metrics, increase test datasets, enhance dataset size, improve processing efficiency, strengthen LSTM-AE for missing data, boost model resilience, develop anomaly classification, design alerts

references

[1] Vasileva, Petya, et al. "Analyzing, Identifying & Alerting on Network Issues." EPJ Web of Conferences, vol. 295, 2024, p. 07003. EDP Sciences, https://doi.org/10.1051/epjconf/202429507003.
 [2] Vasileva, Petya, et al. "perfSONAR Network Analytics: Status & Plans." CERN, 2024.