
Packaging HEP heterogeneous mini-apps for portable benchmarking
and facility evaluation on modern HPCs

Mohammad Atif1, Pengfei Ding2, Ka Hei Martin Kwok3, Charles Leggett2

1Brookhaven National Laboratory, Upton, NY 11973, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

https://www.anl.gov/hep-cce

Introduction

We present two methods of deploy-
ing turn-key test applications, where
by means of containerization and au-
tomated configuration and build tech-
niques such as spack, we are able to
quickly test new hardware, software,
environments and entire facilities with
minimal user intervention, and then
track performance metrics over time.

Spack

Spack is a package manager that supports multiple
package versions, platforms and compilers
Designed to handle software distribution in the
complex HPC eco-system
Heavy use of system packages, optimized for particular
HPC system
Often build many variants of the same package

Large user-base with detailed documentation
available

Containerization

Containerization using technologies such as docker
or podman allows projects to be compiled against
pre-built dependencies
By providing several base container images based
on different GPU programming models, such as
CUDA, HIP, Kokkos and SYCL, and GPU
architectures, such as AMD’s MI100 and
NVIDIA’s A100 GPU, we can rapidly deploy the
same code to run on different platforms.

P2R with Spack

p2r implementations
Advantage: p2r has various implementations that covers broad range of technologies,
and all 3 main GPU types.
Light-weight program with minimal dependencies makes it suitable for spack.

Spack implementation
Implemented as a CMake package
Spack variants
Used 2 multi-valued variant options: impl={cuda,kokkos,alpaka,stdpar,sycl}
and backend={nvidia} to specify implementation and backends
p2r options

Allow control of program duration by exposing controls over nevts, ntrks, bsize
and NITER

Detailed compiler options in each impl and backend combination are hidden from
for simplicity and reproduciblilty.

p2r implementations

TBB CUDA HIP Kokkos Alpaka Std::par SYCL

NVDIA nvc++

AMD

Intel dpl

CPU OMP TBB

Available p2r implementations on different execution backends (Green solid cells).

This work implements the spack installation method of the NVIDIA backends for all

p2r implementations (Blue boarded cells).

External packages
p2r depends on vendor software (e.g. CUDA, nvc++) or libraries (e.g. Kokkos, Alpaka) for
specific implementations
Can provide these external packages in system locations to avoid installing from source
Instructions on github lists the required external packages for each versions of p2r

Example installation commands:
spack install p2r-tests@kokkos impl=kokkos backend=nvidia %gcc@9.2.0
spack install p2r-tests@main impl=stdpar backend=nvidia %nvhpc@22.7

Further development
Near term extend to other GPU/CPU backends

Test on different HPC systems

Integrate into official spack github as a package

FastCaloSim with Docker Containerization and Automated Git CI Workflows on HPCs

Docker containers for FastCaloSim are built on base NVIDIA and
AMD GPU images. Kokkos & SYCL added as needed

ROOT v6.32.02 added to each container built with appropriate
compiler

Continuous Integration workflows are triggered from git actions

A message is sent to a HPC gateway by GitHub webhook each time
when a CI workflow is triggered

The gateway checks if the CI job is:
triggered in an allowed repository and branch
triggered by a GitHub user who already has an account with the HPC facility

Self-hosted runners

SYCL

Kokkos

HIP

CUDA

x86

std:par

ROCm

alpaka

Build images

Postprocess

Automatic Trigger,
e.g. new software 
version, push 
to repository

DB

Push images

Run FCS

Parse

Pull

The gateway sends the job to the HPC
Start a self-hosted runner remotely on the HPC
Self-hosted runner takes only the admitted CI job, and tear itself down immediately
after job completion.

Job downloads the appropriate base docker image then:
Builds the repository against the base image dependencies
Tags and pushes the new image to an image registry
Executes the FastCaloSim binary with various particle & energy configurations
Job outputs are parsed to extract performance metrics

Performance metrics and platform
specifications are uploaded to a database
Plots are automatically generated to
track performance

Work supported by US Department of Energy, Office of Science, Office of High Energy Physics
under the High Energy Physics Center for Computational Excellence (HEP-CCE), a collaboration
between Argonne National Laboratory, Brookhaven National Laboratory, Fermi National Accelerator
Laboratory and Lawrence Berkeley National Laboratory.


