
Prometheus-Powered Insight: Monitoring Koji’s perfor-
mance

Marta Vila Fernandes1,∗

1IT Department, CERN - 1211 Geneva 23 - Switzerland

Abstract. Efficient, ideally fully automated, software package building is es-
sential in the computing supply chain of the CERN experiments. With Koji, a
very popular software building system used in the upstream Enterprise Linux
communities, CERN IT provides a service to build software and images for the
Linux OSes we support. Due to the criticality of the service and the limitations
in Koji’s built-in monitoring, the CERN Linux team implemented new function-
ality to allow integration with Prometheus, an open-source monitoring system
and time-series database. This contribution will give an overview of Koji and
its integration with Prometheus and Grafana, explain the challenges we tackled
during the development of the integration, and how we’re benefiting from these
new metrics to improve the quality of the service.

1 Introduction
The CERN Linux team is responsible for defining the Linux strategy for the organiza-

tion, providing support for package and image building, as well as for the deployment and
operation of the supported Linux distributions on servers and managed desktops. The Linux
operating system is heavily used at CERN for several use cases, including CERN experi-
ments, accelerators, and IT. Figure 1 shows the number of Linux hosts per CERN depart-
ment/group. The majority of the Linux machines are managed by IT services (for instance
Lxplus and batch services), but also the Beams and Experimental Physics departments are
large consumers of the Linux services. Of the approximately 13,800 (physical and virtual
machines) in the Data Center, about 13,200 hosts are running Linux. There are also approxi-
mately 10,500 hosts running Linux at CERN outside the Data Center. However, this number
can be underestimated because some experiments have their own mirrors of our content in
the CERN technical network, that has been designed to be inaccessible from outside CERN,
and their machines don’t access our services directly.

These numbers show the high importance of having an automated, consistent and reliable
software package building system, such as Koji, to provide a service to build software and
images for the Linux operating systems supported at CERN, that can be used across the all
CERN community, institutions, universities, and other particle accelerators.

2 Koji build system at CERN
Koji is an open source tool, written in Python, used and developed primarily by Red Hat

employees. It is a system for building and tracking binary RPMs, Cloud and Docker images.
∗e-mail: marta.vila.fernandes@cern.ch



Figure 1. Number of host by CERN department/groups

Koji enables users to create tags, that represent internal repository names. The user sub-
mits a source RPM or a git repository, and Koji builds a binary RPM associated with a tag.
Koji supports building for many architectures, such as x86_64, aarch64 and i386, which
are the ones being used at CERN.

CERN Koji has around 2700 tags, approximately 8200 packages and thousands of tasks,
including builds.

The goal of this work is to show how Prometheus can be used to retrieve Koji’s metrics
that helps to monitor its performance and to guarantee the good delivery of the service.

2.1 Koji components

Koji is comprised of several components:

• koji-hub is the center of all Koji operations. It is the only component that has
direct access to the PostgreSQL database and is one of the two components that have write
access to the shared file system.

• kojid is the build daemon that runs on each of the build machines. Its primary
responsibility is polling for incoming build jobs and handling them accordingly.

• kojira is a daemon that handles buildroot repos. It checks if any builds were
added to buildroot or build tag configuration has changed. If so, it triggers a task to update
the buildroot.

• koji-web is a web frontend to Koji.

• koji-client is a CLI written in Python that allows users and admins to interact with
Koji.

At CERN, the service is composed of two environments, test and production. It has
managed AlmaLinux and RHEL machines, using Puppet for configuration.

The production service has two hub machines, three web machines, and ten machines
with kojid installed, called builder machines. There are six builder machines for x86_64 and
i386, and four builder machines for aarch64.

2.2 Koji client configuration

The Koji client is available as part of the Koji package. The upstream package is rebuilt
at CERN every time there is a new version, because that way we can include patches needed
to be supported at CERN, and CERN customisations. It is firstly deployed in the testing
environment and kept during one week before deploying to production, to ensure the new
version didn’t introduce any regressions.



To use the CERN Koji service, each user needs to request access to the Linux Team, which
has an automated process to grant build permissions. The synchronization script is scheduled
to run every day within a container in Nomad, which is a workload orchestrator used for
automating tasks. It is important to control service’s users, what tags they are responsible for,
and Koji’s ACLs to avoid security vulnerabilities.

The users are encouraged to use the centralized interactive logon services, where the Koji
client is installed and centrally managed.

Koji website is internal accessible in koji.cern.ch, and it uses Kerberos for authentication.

2.3 Koji concepts: Tags, Packages and Hosts

Koji organizes packages using tags, and all CERN tags in Koji have a corresponding
internal repository on http://linuxsoft.cern.ch/internal/repos.

There are three different concepts about packages in Koji: the package itself, a build,
and the RPM. The package is the name of a source RPM. A build of a package includes
all the architectures and subpackages. An RPM created by a build operation has a specific
architecture and subpackage of a build.

For instance, mytag9al− testing tag has the package, myrpm.

• Tag: mytag9al− testing

• Package: myrpm

• Build: myrpm−1.1−29.el9

• RPM: myrpm−1.1−29.el9.x86_64.rpm

An RPM is composed of a name, version, and release (which contains a disttag), the
NVR. It is unique in Koji. In the example above, the RPM name is myrpm, version 1.1,
release 29.el9, distag el9, and arch x86_64.

An RPM is built with rpmbuild command and to generate a clean buildroot, Koji uses
Mock. To release a new RPM, the release number associated with it needs to be increased in
the .spec file.

In Koji web, there is a Hosts tab, where information about the Koji builders can be found.
This information includes the name of the host; the architectures that can be built by each
host; The channels are the general Koji methods associated to each host, it comprises of
createrepo, default, image, and others. For instance, some hosts are used to build
images, or build RPMs, or both. Each channel has different methods, like rebuildSRPM or
newRepo. There is also the concept of Enabled and Ready. A node can accept Koji requests
only if it is enabled. A node can be enabled but not ready, and sometimes it means that the
kojid process is not running, or the host is overloaded. The host can be enabled or disabled
via Koji web button. Tasks have different weights, a decimal number represents them. The
capacity is the total weight of the tasks per node, and the load is the total weight of all the
tasks running at the moment.

2.4 Build operations

Koji can be used to request package builds and get information about the buildsystem. At
CERN, an RPM can be built from a src.rpm or from a version control system, like git.

Koji uses Mock to build RPM packages for specific architectures and ensure that they
build correctly. Mock creates chroots and builds packages in them. A chroot ("change root")
is an isolated root directory that allows you to test safely without compromising the real root

koji.cern.ch
http://linuxsoft.cern.ch/internal/repos


directory. Mock’s task is to reliably populate a chroot and attempt to build a package in that
chroot.

All the build operations can be executed with –scratch to test if the package will build
correctly. The scratch build is useful to be able to build a package against the buildroot, but
without actually finalizing the NVR, meaning that you can build multiple scratch builds with
the same NVR.

Every package needs to be added to a tag before being built.
There are useful commands to check that the RPM package was built, and it is available

in the <tag_name> repository:

• Get the packages that belong to a tag: koji list-pkgs –tag <tag_name>

• Get the latest build of a tag: koji latest-build –all <tag_name>

• Get all the builds given a package: koji list-builds –package <packake_name>

2.5 Koji built-in monitoring

Koji web has a tab called Reports. The reports available are: number of packages owned
by each user, number of builds submitted by each user, RPMs built by each host, tasks sub-
mitted by each user, tasks completed by each host, succeeded/failed/canceled builds, number
of builds in each target and cluster health.

The information in these reports is useful, but its format is not easy to manipulate. It
cannot be used by external monitoring software, like Grafana, and also misses valuable in-
formation about the Koji builders that can help to detect problems in advance and/or react
promptly and accordingly to the issue.

3 Prometheus - Improving Koji’s monitoring

Prometheus is the monitoring tool chosen to improve the quality of the Koji service. It is
a highly-reliable open-source tool written in Go. It has a lot of advantages, mainly, it is easy
to use, is flexible, has a good performance, uses a pull-based model, and it is quite popular
and has good feedback from the community.

In general, Prometheus scrapes metrics data from HTTP endpoints and then pushes that
data into a database that uses a multidimensional model. The idea of this project was to ex-
pose the Koji information on an HTTP endpoint that can be scrapped by Prometheus servers,
as shown in Figure 2.

Figure 2. Implemented Prometheus architecture on Koji system

Prometheus works taking in account these three points:

• Data collection and retrieval: It follows a pull-based model, where it periodically scrapes
data from Koji web. Koji web script was created to gather relevant information from
Koji using Prometheus metrics and exposes it under https://koji.cern.ch/metrics, allowing
Prometheus servers to gather that information frequently.

• Data storage: The collected metrics are stored in a time-series database, providing a his-
torical record of system performance over time.

https://koji.cern.ch/metrics


• Service discovery: Prometheus utilizes discovery mechanisms to ensure that new instances
are automatically detected and monitored without manual intervention.

3.1 Prometheus metrics types

Prometheus has a python client library that offers four metric types. For the purpose of
this project, only two of them were applied to get the Koji metrics that were needed to ensure
the health of the Koji service. The two Prometheus metric types are:

• Counter: A counter is a cumulative metric that represents a single monotonically increas-
ing counter whose value can only increase or be reset to zero on restart. This metric is
useful to get the number of Koji tasks that were completed, succeeded and failed on each
day.

• Gauge: A gauge is a metric that represents a single numerical value that can arbitrarily
go up and down. The value of the capacity or load of each Koji builder node can be taken
using that metric.

3.2 Prometheus metrics exporter

One of the challenges was to understand how the Linux team could incorporate a
Prometheus metrics exporter into Koji. As Koji is written in Python, the ideal Prometheus
client library to use was the Python library.

The first step was to create a Python script to generate Prometheus Koji metrics, called
kojiexporter.py that can be accessible in /usr/share/koji-web/lib/kojiweb/ of a
Koji web node, and written under /www/lib/kojiweb/ Koji project path. The patch of the
Koji metrics exporter script can be found in https://gitlab.cern.ch/linuxsupport/rpms/koji/-/
blob/master/src/prometheus-metrics.patch.

The script is composed by two Python classes:

• KojiMetrics: It creates a Koji session, then it gets the list of hosts, channels, and tasks.
Based on that information, a collect metrics function was defined to get the Prometheus
metrics using the two metrics types explained in section 3.1.

• PrometheusExpositor: Responsible for exposing metrics to Prometheus.

To make the metrics available on Koji web interface under a /metrics tab, a new
function, called metrics, was added to the /www/kojiweb/index.py file. This function
will call the Koji exporter script and expose the data. The patch is available in https:
//gitlab.cern.ch/linuxsupport/rpms/koji/-/blob/master/src/prometheus-metrics-index.patch.

The two patches were added to the Koji spec file, as well as the
python-prometheus_client python package, as a requirement.

The Prometheus metrics defined by type were the following:

The Gauge Koji metrics:
• koji_builders_update: Returns the timestamp of the last update by host, and it also

gives the information if the Koji builder is enabled and/or ready.

• koji_enabled_hosts_capacity_per_channel: Returns the capacity of hosts by chan-
nel.

• koji_enabled_hosts_count: Returns the number of hosts by channel.

• koji_hosts_enabled: It is a boolean and checks if the hosts are enabled.

https://gitlab.cern.ch/linuxsupport/rpms/koji/-/blob/master/src/prometheus-metrics.patch
https://gitlab.cern.ch/linuxsupport/rpms/koji/-/blob/master/src/prometheus-metrics.patch
https://gitlab.cern.ch/linuxsupport/rpms/koji/-/blob/master/src/prometheus-metrics-index.patch
https://gitlab.cern.ch/linuxsupport/rpms/koji/-/blob/master/src/prometheus-metrics-index.patch


• koji_hosts_ready: It is a boolean and checks if the hosts are ready.

• koji_hosts_capacity: Returns the capacity of each enabled host.

• koji_enabled_hosts_capacity_per_channel: Returns the capacity of enabled hosts
per channel.

• koji_task_load: Returns the task load per host.

• koji_packages_per_tag: Returns the number of packages per tag.

• koji_builds_per_tag: Returns the number of builds per tag.

• koji_builds_per_package: Returns the number of builds per package.

The Counter Koji metrics:
Returns the number of Koji taks per channel, method, and tag.

• koji_waiting_tasks: Returns the tasks waiting/unscheduled.

• koji_in_progress_tasks: Returns the tasks in-progress.

• koji_task_completions_total: Returns the tasks completed.

• koji_task_succeed_total: Returns the tasks succeeded.

• koji_task_errors_total: Returns the tasks failed.

• koji_tasks_total: Returns all the Koji tasks.

3.3 Upstream Challenge

Before starting this project and creating the Prometheus metrics for Koji, a discussion
was opened in https://pagure.io/koji/issue/3812 to get feedback from the Koji maintainers.

The idea was also to contribute to upstream Koji, and make the metrics web method a
native part of Koji. That way, Koji users could benefit from it as well. The Koji upstream
feedback was that this kind of monitoring tends to be highly specific to a deployment. They
decided that it doesn’t belong to upstream Koji. It is understandable that the Prometheus
metrics built, can be very specific for the CERN use case.

Then the second idea was to build a web plugin that could be installed to make
Prometheus metrics available, then it would make it optional. Unfortunately, there is no
concept of web plugin in Koji.

The final option was to create our changes as a local patch we would maintain on top
of upstream Koji. The patch link with the code implementation was sent to the upstream
discussion above, because we believe that it can help other Koji users that have the same
need.

4 Grafana - Koji’s metrics visualizations and alerting
Grafana is an open source analytics and interactive visualization web application. At

CERN, this monitoring system is used to produce dashboards and alerts. One of the sup-
ported data sources is Prometheus, that can be easily defined and then based on each metric,
dashboards were created.

In Figure 3, there are four visualizations: the number of Koji builders enabled; the in-
formation about each Koji builder: the hostname, if they are enabled and ready, and the last
update of each host; The pie chart represents the number of total tasks, and how many suc-
ceeded and failed for the current day; The last visualization is the number of waiting and in
progress tasks in the last five minutes.

The number of hosts and the host’s capacity by channel can be visualized in Figure 4, as
well as the current load and maximum capacity by each enabled Koji builder.

https://pagure.io/koji/issue/3812


Figure 3. Koji’s dashboards

Figure 4. Koji’s dashboards

Figure 5. Koji’s dashboards

In Figure 5, three time series were defined: the sum of task load of the hosts in each
moment, which helps us to visualize Koji activity over time. The other two dashboards
represent the number of tasks and the cumulative number of tasks per channel.

These visualizations help to monitor the state of the Koji system, and the big advantage
is having this information consolidated in a single place.

4.1 Alerts

The dashboards are useful, but we are not looking at them all the time. Fortunately, in
Grafana, there is also the possibility to create alerts and integrate them with Mattermost. The
alert rules created were:

• Task load: It is triggered when the Koji builders are reaching the max capacity available.
This is important to understand if the hosts are overloaded, and if that is the case, one
solution can be to add more Koji builders.

• Koji builder giving updates but disabled: If there is a host that is not enabled but is still
alive, meaning that the last update happened in the last minute, the alert will be triggered.



For us, it is important to understand what is happening with the service when we disable a
node, but it still reports activity.

• Koji builder enabled and ready but not giving updates in the last 60s: Conversely, if
a node is ready and enabled, it is important that it gives updates frequently. Otherwise, it
means that the service on that node is down and not reporting correctly.

• Koji builder enabled but not ready: As mentioned before, if a Koji builder node is en-
abled but ‘kojid‘ service is not running, then the node is not ready to receive tasks. This is
a very sensitive case, and it is important to detect it if it happens. One of the implications is
the load growth on the other nodes. After building this alert, some discoveries were made.
We learned that if a node is overloaded, it changes its state to not ready, in order to signal
to the hub that it can’t handle more new tasks. Recently, one of the challenges was to adapt
this alert to not be triggered when the node is overloaded.

5 Conclusion

Now we extract Koji metrics using Prometheus through a Koji web method and expose
that information under https://koji.cern.ch/metrics. It was practical to plug in that information
into the Grafana monitoring system.

Nowadays, it is easy to keep track of the Koji monitor system via the visualizations and
alerts created. In one place, it is possible to check: How many Koji builders are enabled
and ready? How many tasks are being done? How many successes and failures? All these
questions are now simple to answer.

The capacity of the Koji builders is reasonable and doesn’t reach the max load in moments
of peak activity.

Since the metrics generated can be specific for the CERN use case, this work is not a
native part of Koji. The implementation work can help other people with the same goal and
benefit from it. We feel that Prometheus Koji’s metrics make Koji easier to monitor and may
benefit others.

References

[1] Koji’s documentation https://docs.pagure.org/koji/, [Online; accessed 27-August-2024]
[2] Prometheus Documentation https://prometheus.io/docs/introduction/overview/, [Online;

accessed 23-August-2024]
[3] Grafana Labs Grafana Documentation https://grafana.com/docs/grafana/latest/, [Online;

accessed 23-August-2024]

https://koji.cern.ch/metrics

	Introduction
	Koji build system at CERN
	Koji components
	Koji client configuration
	Koji concepts: Tags, Packages and Hosts
	Build operations
	Koji built-in monitoring

	Prometheus - Improving Koji's monitoring
	Prometheus metrics types
	Prometheus metrics exporter
	Upstream Challenge

	Grafana - Koji's metrics visualizations and alerting
	Alerts

	Conclusion

