

Karlsruhe Institute of Technology

Experience with ARM WNs at the WLCG Tier1 GridKa

Armin Krull*, Matthias Jochen Schnepf, Max Fischer, Andreas Petzold

Power Efficiency

Hardware

- Power Efficiency is important for data centers
- ARM-CPUs seems to be more power efficient than x86-CPUs [1],[2]
- Results of the HEPScore23 benchmark [3] and IPMItool [4] recordings at WLCG-Tier1 Datacenter GridKa

ARM-Servers

Dual socket with two Ampere Altra Max M128-30 processors with 768GiB RAM

x86-Servers

Dual socket configuration with two AMD EPYC 7742 (2.25 GHz) or two EPYC 7702 (2.0GHz) processors with 566GiB RAM

Comparison ARM vs x86

Power efficiency can be increased considerably
No significant difference between Linux and

by regulating the CPU frequency. Benchmarks on 256 threads on different CPU frequencies show a power efficiency maximum at around 2.2 GHz benchmark limitation of threads. Only the alicedigi-reco workload seems to overstep the set limits

[1] Emanuele Simili; Energy Efficiency in H.E.P. (ARM vs. x86 and beyond); to be published; CHEP 2023 Proceedings Publication through EPJ Web of Conferences

[2] Talk: Heterogeneous Computing and Power Efficiency in HEP by Emanuele Simil; Track 7; 23 Oct 2024, 17:09
[3] HEP-Benchmark Suite: https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
[4] D. Laurie, IPMItool: https://github.com/ipmitool/ipmitool

- 12 ARM Workernodes are in use currently at WLCG-Tier1 Datacenter GridKa without major problems
- IPMITool on ARM has an longer readout time than on x86

*armin.krull@student.kit.edu

27th International Conference on Computing in High Energy & Nuclear Physics

