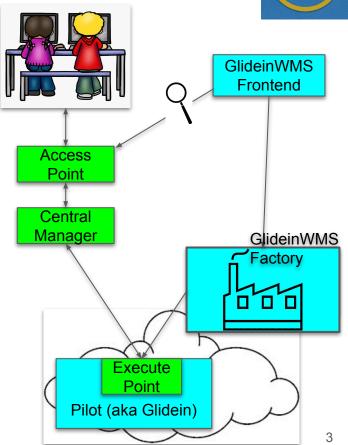


Improving CMS CPU Efficiency through Strategic Pilot Overloading

<u>M. Mascheroni</u>, A. Pérez-Calero Yzquierdo, F. Von Cube, V. Zokaite, H. Kim, F. Würthwein *for the CMS Collaboration*

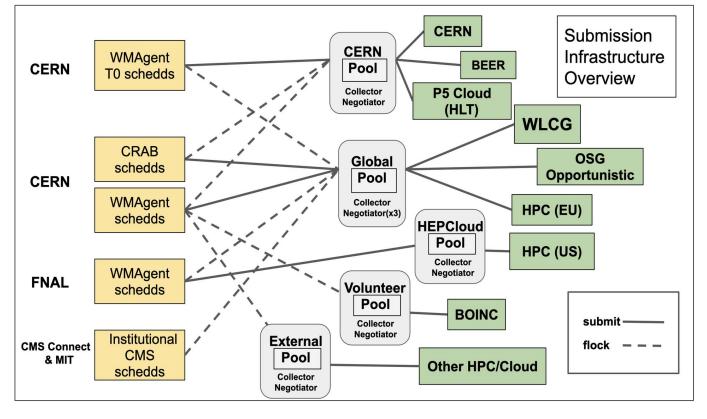
Outline of the talk


- The CMS Submission Infrastructure
 - GlideinWMS and pilot approach
- Efficiency of CMS jobs
 - Sources of inefficiencies
 - Recovering CPU cycles through pilot overloading
- Overloading in action
 - Preliminary results
 - Overloading deployed in production
 - Impact on event rates

The CMS Submission Infrastructure Group

SI

- Part of CMS Offline and Computing in **charge** of:
 - Organizing HTCSS and GlideinWMS operations in CMS, in particular of the Global Pool, an infrastructure where reconstruction, simulation, and analysis of physics data takes place
 - Communicate CMS priorities to the development teams of GlideinWMS and Condor
- In practice:
 - We operate a set of federated pool of resources distributed over 70 Grid sites, plus non-Grid resources
 - Join them into a Global Pool of resources managed by HTCondor

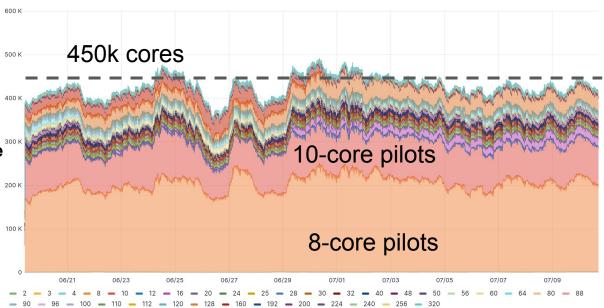


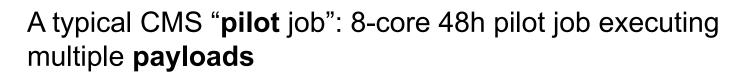
The CMS SI: federated HTCondor pools

Types of access point

Types of execution point

The CMS SI: multicore pilot model


Partitionable slots pool (TotalSlotCPUs) ()


CMS Operates in a **late-binding** model

Acquiring resources for the CMS SI:

- Resources mainly acquired via 8-core
 pilot jobs submitted to WLCG sites' CEs
- Flexibility to use non-standard slots, e.g.: high-mem, whole nodes, etc

V a I i d	4 Core Production job (90% efficient)	4 Core Analysis job (50% efficient)	4 Core Production job (85% efficient)			
a			Single core Production job (30% efficient)			
t	4 Core Production job		Single core Analysis job (70% efficient)			
i	(95% efficient)		Single core Analysis job (50% efficient)			
0			Single core Analysis job (60% efficient)			

Walltime

A typical CMS "job": 8-core 48h pilot job executing multiple payloads

V a l i d	4 Core Production job (90% efficient)				4 Core Production job (85% efficient)		
a t i o	4 Core Production job (95% efficient)		Single Single	core A core	core Production job Analysis job Analysis job ore Analysis job		

- Efficiency results observed and reported by our sites to the EGI accounting portal
 - That include scheduling AND payload inefficiencies
 - They can be factored and measured independently

Sources of CPU Inefficiency

SI

- Payload Inefficiencies
 - Bootstrapping and staging
 - I/O-bound jobs
 - Either heavy I/O jobs or jobs that use remote reads
 - \circ User code (CRAB jobs)
 - StepChain (vs TaskChain): Multiple executables linked together as a single payload job
 - Pro: less jobs to manage, reduce intermediate data storage and transfers. 10x faster turnaround.
 - Con: diverse resource needs leading to inefficiencies
- Scheduling Inefficiencies
 - Non-standard requirements for jobs
 - System optimized for 2GB per core of RAM and 8 hours of walltime
 - Limited pilot lifetime: draining and defragmentation

Valid reasons for inefficiencies, hard to reduce often.

• Scheduling efficiency typically >95% level for stable sites (T1s and big T2s)

Can we recover CPU cycles in some other way?

Strategy to recover unused CPU cycles: overloading pilots

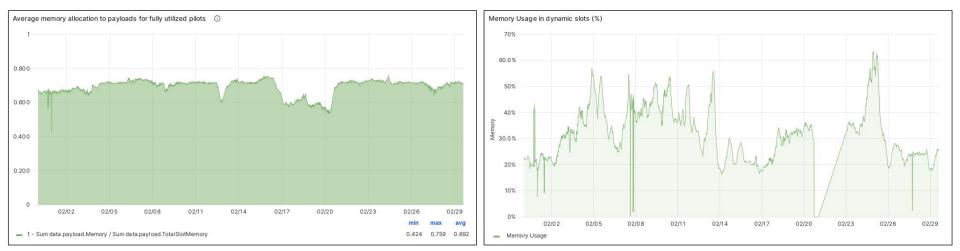
Idea: Re-definition of the efficiency problem:

- Improve CPU utilization efficiency by pushing more workload into the same pilot envelope
 - Modify pilots so that they accept more payload jobs into the same resources
 - Trivial to implement and test from CMS Submission Infrastructure side

Principle: we want to recover unused CPU, not gain opportunistic cycles!

• **Moderate overloading**: add 25% extra CPU cores and memory to the nominal values of our standard 8-core pilot. Provides 2 extra cores, e.g. available to run additional CRAB or production payload

	V a I i d	4 Core Production job (90% efficient)	4 Core Analysis job (50% efficient)	4 Core Production job (85% efficient)				
8+2 ores	a t i o n	4 Core Production job (95% efficient)		Single core Production job (30% efficient) Single core Analysis job (70% efficient) Single core Analysis job (50% efficient) Single core Analysis job (60% efficient)				
		Single core Analysis	ob	Single core Analysis job				
ļ		Single core Pr	oduction job	Single core Analysis job				

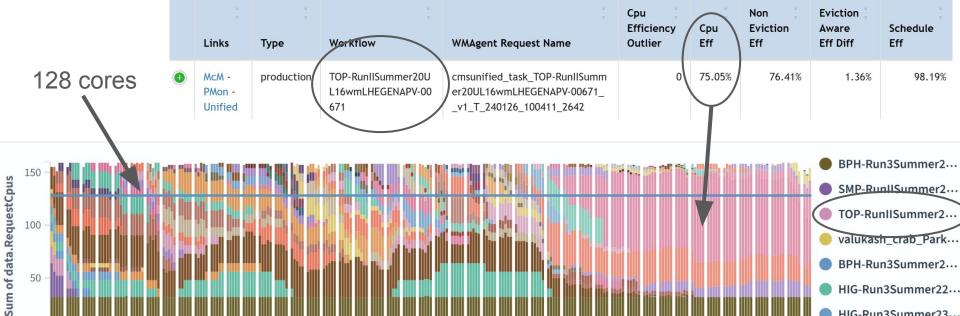

Available memory for overloading pilots

Do we have enough memory available in the pilots to make moderate overloading work? Analyse memory use for fully used pilots at Tier-1s (e.g. 30 day plots):

- Typically, <u>at least 20%</u> of the partitionable slot memory remains unscheduled for fully occupied pilots
- Then, for dynamic slots running the payload jobs, the average memory utilization is typically below 50%

There is no memory constraint for a moderate overloading strategy (e.g. +25%)

Ξ


06:00

12:00

18.00

Overloading: whole node slot real example

06:00

12:00

18:00

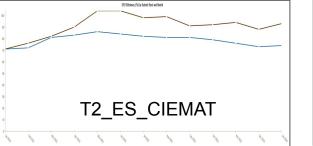
00.00

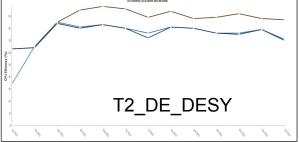
data.RecordTime per 10 minutes

HIG-Run3Summer23...

BPH-RunllSummer2...

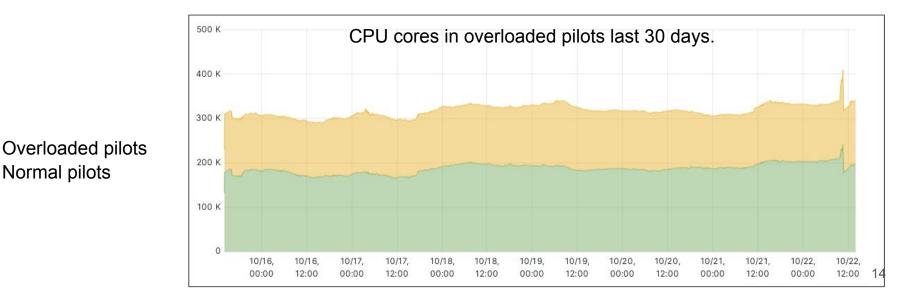
Some results


Promising results already in early 2023



Initial test with three sites overloading only one CE each

			Res	ource Centre PIC	— CPU Efficienc	y (%) by Submit	Host and Month	(Custom VOs)					Link	<u> </u>
Submit Hast	jan 2023	Feb 2023	Nar 2023	Apr 2023	May 2023	Jan 2023	Jul 2023	Aug 2023	Sep 2023	Oct 2023	Hor 2023	Dec 2023	Jan 2024	Teta
								and the second						
e13.pic.es=9619/ce13.pic.es-condor	71.58%	66.12%	77.66%	90.47%	86.59%	106.37%	95.59%	91.83%	71.93%	91.76%	113.82%	77.65%	88.38%	87.869
14.pic.es:9619/ce14.pic.es-condor	71.58%	65.44%	75.97%	80.14%	74.64%	84.7%	80.64%	78.43%	58.3%	78.96%	91.25%	65.71%	73.25%	13.5
													1 tool	
													Lin	
			Resource	Centre CIEMAT-L	.CG2 — CPU Effi	ciency (%) by Su	bmit Host and Mo	onth (Custom VOs	5)					-
Sabait Rest	Jan 2023	Feb 2023	Mar 2023	Apr 2023	ilay 2023	Jan 2023	Jul 2023	Jag 2023	Sep 2023	Oct. 2023	Her 2023	Dec 2023	Jan 2024	Tetal
andorce).cienat.es-9619/condorce).cienat.es-condor	71.06%	76.15%	82,41%	90,45%	104.08%	104.05%	98.85%	99.25%	91.56%	92.59%	94.57%	88.52%	93.74%	92,94%
endorce2.ciemat.es-9619/condorce2.ciemat.es-condor	71.01%	72.86%	81,36%	83.56%	86.01%	84.36%	82.8%	81.33%	81.61%	79.01%	76.46%	73.13%	74,97%	19,12%
			Resour	ce Centre DESY-H	IH — CPU Efficie	ncy (%) by Subn	nit Host and Mont	h (Custom VOs)					Lin	<u> </u>
Submit Heal	Jan 2023	Feb 2023	Resour Nar 2023	ce Centre DESY-H Apr 2023	IH — CPU Efficie Nay 2023	ncy (%) by Subn Jan 2023	it Host and Mont	h (Custom VOs) Aug 2023	Sep 2023	Oct 2023	Hor 2023	Dec 2023	Jan 2024	
	Jan 2023 63,75%	Feb 2023	War 2023		ilay 2023	Jan 2023			Sep 2023	Oct 2023				Tota
Solomit Hest 14 AtconducceQ.desy.de=3613/grid-AtconducceQ.desy.de=conduc 14 Atconducce1.desy.de=3613/grid-Atconducce1.desy.de=conduc				Apr 2023			Jul 2023	Aug 2023			Hor 2023 75.03% 92.19%	Dec 2023 79.45% 88.34%	Jan 2024	Tota 76.379 87.879



Overloading pilots expansion

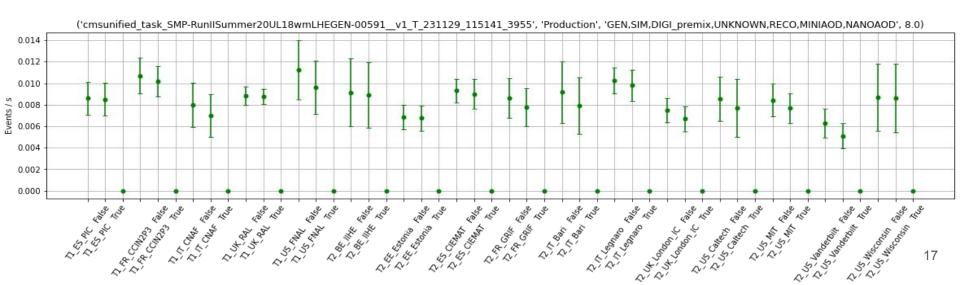
- After promising initial results, CMS decided to enable overloading at more resource providers starting in January 2024:
 - All Tier-1 sites
 - A set of good Tier-2s (average scheduling efficiency already at 95%)
- Still kept ~50% unchanged for each site in order to compare results

Efficiency Improvements

- From the **pilot logs**, total walltime and used CPU time can be extracted.
 - Calculate CPU efficiency as measured and reported by the resource providers
- Performance difference is noticeable when comparing overloaded and non-overloaded pilots
 - **Significant improvement** in CPU utilization
 - No observed effect on job failure rates

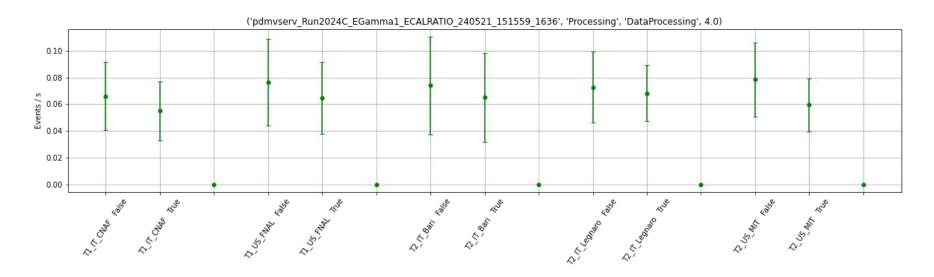
Site Name	Normal Efficiency	Overloaded Efficiency	Efficiency increase
T1_FR_CCIN2P3	84.57%	95.78%	11.21%
T1_IT_CNAF	79.81%	84.62%	4.81%
T1_UK_RAL	72.41%	85.00%	12.60%
T2_BE_IIHE	77.21%	89.17%	11.96%
T2_DE_RWTH	55.68%	78.01%	22.33%
T2_EE_Estonia	73.81%	85.47%	11.66%
T2_ES_CIEMAT	72.65%	88.40%	15.75%
T2_IT_Bari	74.48%	78.87%	4.39%
T2_IT_Legnaro	75.77%	85.88%	10.11%
T2_IT_Rome	60.25%	73.38%	13.13%
T2_UK_London_IC	66.14%	72.94%	6.80%
T2_US_MIT	63.74%	70.61%	6.87%

Impact on event rates (I)


Evaluated the impact of pilot overloading on event processing rates for diverse CMS workload types and sites. Results from **actual execution on the Grid**

Event Rates comparison (I)

- Compared event rate results for all workflows for several months, **classifying jobs by execution site** and workflow type.
- First example, notice this full **StepChain simulation workflow** (~450k jobs in total)
 - Results: event processing rates present **high variability**, with **overloading effect** on throughput **smaller than dispersion** between jobs at the same site, and across sites



Event Rates comparison (II)

- Second example from a data processing workflow (~20k jobs)
 - Analogous results

Impact on event rates (II)

Evaluated event rates in a **controlled environment**: executed a **single type of workflow** (MinBias production) in fully loaded pilots for a variety of sites.

Overall impact on fully loaded pilots

Measured total number of events produced by a single pilot running on 8 physical cores as either 8 or 10 processes.

Increased total event throughput. Slower event rate per process is over compensated by running more processes.

Site	Processor	On (Evt/s)	Off (Evt/s)	Evt/s increment %
T2_BE_IIHE	F2_BE_IIHE AMD EPYC 7452 32-Core Processor		2,82	11,35
T2_DE_RWTH	AMD EPYC 7543 32-Core Processor	2,89	2,49	16,06
T2_ES_CIEMAT	Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz	4,31	3,58	20,39
T2_IT_Bari	AMD EPYC 7413 24-Core Processor	2,96	2,81	5,34
T2_IT_Legnaro*	AMD EPYC 7282 16 7413 24-Core Processor	2,98	2,74	8,76
T2_UK_London_IC	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	1,70	1,61	5,59
T2_US_UCSD	AMD EPYC 7662 64-Core Processor	2,42	1,63	48,47
T2_US_Vanderbilt	Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz	1,30	1,05	23,81

Conclusions

- Moderately overloading of our pilots allows CMS to recover between 5% to 20% of idle CPU cycles
 - \circ $\;$ Extra 30k cores (re)gained using this strategy $\;$
- No impact observed from the site perspective on job error rates, CPU or memory (ab)use.
- Studies on event processing rate has shown:
 - Higher variability between jobs of the same workflow and between sites than an overloading true/false effect
 - Overall event rate increased in dedicated test

Acknowledgements

Cofinanciado por la Unión Europea

A. Pérez-Calero Yzquierdo's research supported by projects PID2020-113807RA-I00 and PID2022-142604OB-C21, funded by

GOBIERNO

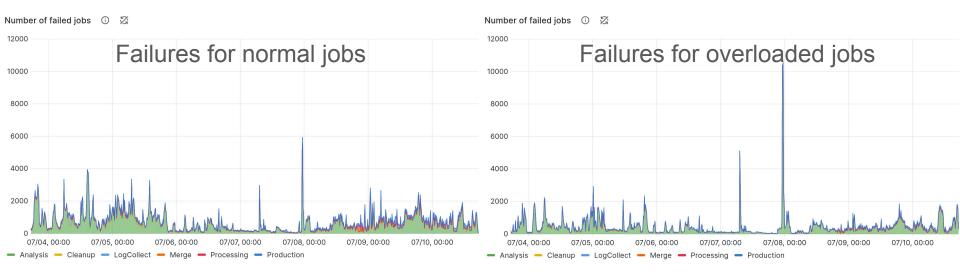
DF FSPAÑA

MINISTERIO

Y UNIVERSIDADES

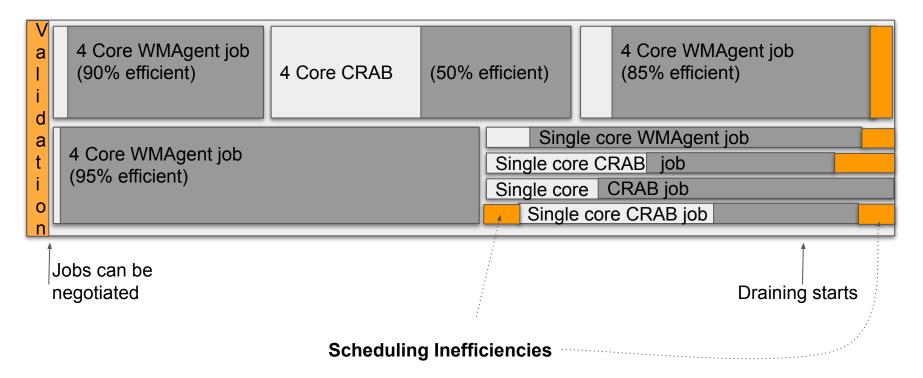
DE CIENCIA, INNOVACIÓN

This work was partially supported by the US National Science Foundation under Grant No. 2121686 and under Grant No. 2030508


Backup Slides

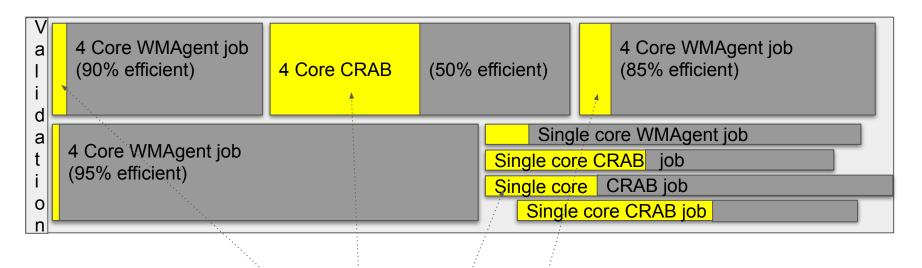
Job Failures Comparison

Absolute number of job failures in the last week grouped by job type

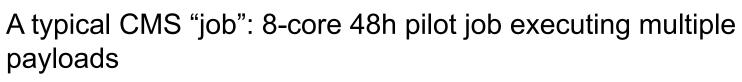


No impact in terms of job failures

A typical CMS "job": 8-core 48h pilot job executing multiple payloads



A typical CMS "job": 8-core 48h pilot job executing multiple payloads



Payload Inefficiencies

(Uses payload walltime as denominator)

V a l i d	4 Core WMAgent job (90% efficient)	4 Core CRAB	(50% efficient)	4 Core WMAgent job (85% efficient)
a t i o	4 Core WMAgent job (95% efficient)		Single co	ngle core WMAgent job ore CRAB job ore CRAB job le core CRAB job

- Efficiency results observed and reported by our sites to the EGI accounting portal include scheduling AND payload Inefficiencies
- They can be factored and measured independently