
Leveraging public cloud resources
for the processing of CMS open
data

Kati Lassila-Perini
Helsinki Institute of Physics - Finland

Tom Cordruwisch, Subash Jayawardhana
Lapland University of Applied Sciences - Finland

CHEP - October 19 - 25, 2024

1

https://opendata.cern.ch/docs/about-cms
https://www.hip.fi/
https://www.lapinamk.fi/en

CMS Open Data1

2

Decade of CMS open data
- with a small dedicated team

3

CMS open data in use

https://opendata.cern.ch/search?q=&f=experiment%3ACMS&f=type%3ANews&l=list&order=desc&p=1&s=10&sort=mostrecent
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=references.reference.dois%3A10.7483%2FOPENDATA.CMS%2A

4

All released

50% released

In preparation

Open data quantity & time defined
in the CMS open data policy

2011
2021

2013
2015

2017
2019

2023
2012

2014
2016

2020
2022

2024

https://opendata.cern.ch/record/415/files/CMS-Data-Policy-1.3.pdf

Public cloud and
Kubernetes
Why and how?

2

5

6

NanoAOD:
 compact format

(1 kB/evt)
good for many analyses

no need for CMSSW
Custom

NanoAOD:
enrich

NanoAOD
with what you

need

MiniAOD:
richest Run-2 OD format

(30-40 kB/evt)
good for ~ all analyses

requires CMSSW

Motivation: 1 - Why?

ease of
 use

completeness

https://opendata.cern.ch/search?q=&f=type%3ADataset&f=year%3A2016&f=file_type%3Ananoaod&f=file_type%3Ananoaodsim&l=list&order=desc&p=1&s=10&sort=mostrecent
https://opendata.cern.ch/search?q=&f=type%3ADataset&f=year%3A2016&f=file_type%3Aminiaod&f=file_type%3Aminiaodsim&l=list&order=desc&p=1&s=10&sort=mostrecent
https://cms-opendata-workshop.github.io/2024-07-29-CERN/
https://cms-opendata-workshop.github.io/2023-07-11-cms-open-data-workshop/

7

Custom
NanoAOD:

enrich
NanoAOD

with what you
need

Motivation: 2 - How?

code:

env:

resources:

Why cloud and Kubernetes?

Do you have? Want to get? Use your resources

● Read the CMS OD workshop tutorial (HTCondor)
● Ask your IT support

2 Tools

● Read the CMS OD workshop tutorial (HTCondor)
● Ask your IT support

3 Skills

● Process what you need
● Download and store locally
● Analyze on your own resources

4 Your custom CMS OD

8

● No need for cloud resources
● Ask your IT support

1 Computing resources

https://cms-opendata-workshop.github.io/2024-01-03-india-whepp/

Why cloud and Kubernetes?

Do you have? Want to get? Why cloud / Kubernetes?

● Kubernetes as a basic tool
● Terraform to deploy resources
● Argo workflows to manage jobs
● Open source and free

2 Tools

● Applicable within and beyond research
● Attractive for early careers and young-minded
● Example setup provided - we did it for you!

3 Skills

● Process what you need
● Download and store locally
● Analyze on your own resources

4 Your custom CMS OD

9

● Short-term, immediate resources
● Pay what you use
● Compatible with CMS OD environment

1 Computing resources

https://kubernetes.io/
https://developer.hashicorp.com/terraform/intro
https://argo-workflows.readthedocs.io/en/latest/

How much time and money?
Resources from a Google Cloud Research credit 303424260

3

10

11

Benchmarking use case

◉ Processing custom-NanoAOD:
○ input: MiniAOD data
○ full NanoAOD processing + Particle-Flow (PF) candidates

■ same as in the already-provided PF-Nano datasets on the portal
○ image: CMS OD image with PFNano processing code precompiled
○ using Argo workflow to run the processing

■ steps: get dataset metadata → make a joblist → process x N
jobs

 → (test plot)

 Evaluate Quantify

https://opendata.cern.ch/search?q=&f=file_type%3Ananoaod-pf&l=list&order=desc&p=1&s=10&sort=mostrecent
https://opendata.cern.ch/docs/cms-guide-docker#images

Persistent storage

eospublic (XRootD) file list files

12

1 3

42

Container image:
 cernopendata-client
Task: Get metadata

Container image:
 root
Task:Test plots

Container image:
 python
Task: Build the joblist

Container image:
 cmssw-pfnano
Task: Process

Workflow structure

12

Not tested: GKE Auto-pilot clusters
■ creates the cluster based on the resource

request
■ did not allow for a NFS disk server

(container in the privileged mode)
■ auto-scales (nodes deleted automatically)
■ creating nodes with the image from the

secondary boot disk did not work out of
the box

◉ Vocabulary
○ GKE = Google Kubernetes Engine
○ Cluster consists of nodes (machines with local boot disks)
○ Jobs run on pods (containerized applications) on the nodes
○ Persistent storage is a disk available for all nodes (and pods)

◉ Two types of GKE clusters: standard and auto-pilot:

Using: GKE Standard clusters
■ allows defining all cluster components

(type and number of nodes)
■ auto-scales (nodes deleted automatically)

if so configured
■ cost goes with time and depends on the

cluster setup
■ can create nodes with the container image

from a secondary boot disk

Cluster types

13

Disk types and cost

◉ NFS disk
○ predefined size
○ the cost / disk size, not / usage
○ requires an NFS server on the cluster

◉ Google Cloud Storage bucket
○ size not predefined
○ the cost / actual usage

◉ Storage:
○ negligible (for a cluster lifetime 1-2d)

◉ Download (“egress”):
○ costly

14

europe-west4
(Netherlands)

NFS GCS bucket

Storage
/month

0.44$/10GB
(22$/500GB)

SSD: 1.87$/10GB

0.20$/10GB
(10$/500GB)

Download
cost

0.12$/GB
⚠👉(60$/500GB)👈⚠

Download
time

Local download speed

Slight dependence on
distance

Idem

Independent of
distance→ Our choice: GCS bucket

for the ease of use

Cluster and job configuration

◉ Node type
○ number of CPUs and amount of memory (“standard”/”highcpu”/”highmem”)

◉ Match with the job resource needs
○ use a test workflow running a single job / node to see the resource needs
○ for a quick, provider-independent check:

kubectl top node (check node resources in use)
kubectl top pods -n argo (check single pod usage)

○ resource requests define how argo distributes the jobs to the nodes
■ goal: close to full occupancy

● lack of memory kills
● lack of CPU slows down

15
→ 1 job / vCPU

Cost of full dataset processing

16

→

An example job of 33M events, MuonEG (1.1 TB)
90-node e2-standard-4 regional cluster
(4 vCPUs, 16GB memory / node) - auto-scale
80 CHF - 9 hours

⚠👉Add data download👈⚠
 ⚠👉~ 40$ / 350GB 👈⚠

CPU

RAM

Disk

https://opendata.cern.ch/record/30511

Auto-scaling - input files and events
are not equal!

17

File size varies

Time / event varies (within a dataset) Events / file varies

Jobs are not equal in time!

18

Auto-scaling at work:
cost = N nodes x time

Optimal configuration:
a large cluster for a short time

Different CPUs:
- e2 :“everyday” $0.14754/h
- c2 :“high performance” $0.2297/h

 80$ / 1TB
Approximate price of PFNano-type processing / 1 TB of input data

40$
Example download (PFNano-type content - 35% of the original size)

 7 h / 1 TB
Time to process 1 TB

19

20

◉ Did the jobs fail and why?
○ Some XRootD timeouts (fixed on server-side), rare cluster networking timeouts.

◉ Can we gain in speed by uploading input files to the cluster?
○ No, not for this workflow. → See back-up

◉ How to handle the big CMSSW container image?
○ Use a secondary boot disk.→ See back-up

◉ Is there an overhead for Kubernetes and Argo services?
○ Nothing significant → See back-up

◉ What about spot / preembtible nodes (cheap but deletable)?
○ Cheaper but unreliable, definitely worth a follow-up → See back-up

◉ I/O can be expensive
○ Message logger every event increases run time 1-2 %.

◉ Mounted disk on kubernetes pods is shared to the persistent storage at the
end of the step

○ Internal networking in the cluster can be surprisingly slow.

◉ Multithreading in kubernetes clusters is not obvious
○ CMSSW jobs can be configured to run in parallel threads within a job.
○ But: in a cluster, 4 single-thread jobs go faster than a 4-thread job in a 4 vCPU node.

FAQ and other observations

Normal Preemtible

21

Is this difficult?

ADAPT FOR YOUR USE and OFF YOU GO!

Run a test job with your processing code.
Evaluate your output file size and adapt the

disk size accordingly.
Adapt the cluster size and type or use our

suggested values.

KNOW YOUR PHYSICS and CMS OD

Have your research idea!
Learn about CMS OD:
 - Workshops / docs / support
Need more than NanoAOD?
 - No? You could have skipped this talk.
 - Yes? Adapt the example to your needs.

GET STARTED WITH OUR INSTRUCTIONS and EXAMPLES

Create a Google Cloud project. / Install: terraform, gcloud (or use Google Cloud shell), argo CLI, kubectl.
Deploy resources using example Terraform scripts.

Run our example job with Argo workflows.

Creating your
custom CMS
Open Data

https://cms-opendata-guide.web.cern.ch/cmsOpenData/workshops/
https://cms-opendata-guide.web.cern.ch/
https://opendata-forum.cern.ch/c/cms/6
https://cms-opendata-workshop.github.io/tutorial-lesson-cloud-processing-gcp/

CMS Open Data can be used without complications, NanoAOD format is a
streamlined and condensed storage format that can be analyzed directly
by open data users.

For analyses requiring detailed event content, we have demonstrated that using
public cloud resources for custom NanoAOD processing is feasible both for time
and cost.

We have shown how to optimize disposable cloud resources for a typical
processing task.

Containerized CMS Open Data workflows can easily be run in a modern
kubernetes environment.

Conclusion and outlook

22

Questions?

Thank you!

 And thanks to SlidesCarnival for this free presentation template

23

http://www.slidescarnival.com/

Back-up

24

25

2010 pp, 50%

First release,
virtual machine
environment

2014, Nov

2011 pp, 50%

Simulated
samples,
validation
examples, basic
tools

2016, Apr

2012 pp, 50%

More usage
examples
(Higgs), Jupyter
notebooks

2017, Dec

2010 pp, 100%

ML samples,
special datasets,
docker
containers,
simulated data
generation tools

2019, Jul

2011 pp, 100%

First examples of
automated
workflows,
improved tools

2020, Aug

2020, Dec

2010-11 HI, 100%

First heavy-ion
data release

2015 pp, 99%

First Run-2 data
release,
slimmer data
format

2012 pp, 100%

Full Run-1 pp
data release,
improved usage
examples

2021, Dec 2022, Dec

2013 HI, 100%

Full Run-1
heavy-ion data,
extended usage
examples

2023, Sept

2016 pp, 50%

First data format
not requiring
CMS software,,
updated usage
instructions

2024, Apr

CMS Open Data
release timeline
releases since 2014

26

Data:

-collision data
-simulations
-additional data for analysis

Tools:

-software
-environments
-interfaces

Knowledge:

-instructions
-actionable examples
-understanding of experimental data

-

CMS open data:
full research-level data
- not an “open-data” reduction

27

Input data streaming vs upload

◉ Data is streamed with xrootd protocol from eospublic at CERN
○ No significant difference between locations close to of far from CERN
○ Processing time dominates over data access time.

◉ Any faster if input data uploaded?
○ Uploaded files to the container local disk before processing

■ Fairly fast upload with xrdcp (upload faster close to CERN)
○ But:

■ No speed-up for the processing time (even slightly slower from local files)
■ Explored differences with file:<filepath> (normal local file access) and

root://<xrootdserver>/<filepath> (local xrootd server in the container): no
significant difference

■ xrootd server version on eospublic more recent that in the container

◉ No significant gain.

Processing time: streaming vs local

28

Compare:
same 4 jobs
several times (Run 1-4)
- streaming
- local (read with file;)
- local (read with root:)

No gain observed.

29

Container image access

◉ CMSSW container image is big
○ Initial pull can take 30 mins.
○ Once pulled on the node, it is available to all pods.
○ Run a start job to pull the image to each node.

◉ Is there a better solution?
○ Uploading image to Google artifact registry and accessing from there is not

significantly faster.
○ Use a new GCP feature: a secondary boot disk with container images

preloaded:
■ Build a disk (tools exist), enable image streaming and define the disk in the

node pool configuration so that it uses this secondary disk.
■ Immediate start of the jobs🚀!

https://cloud.google.com/kubernetes-engine/docs/how-to/data-container-image-preloading
https://github.com/GoogleCloudPlatform/ai-on-gke/tree/main/tools/gke-disk-image-builder

30

Kubernetes / argo overhead

Compare:
same jobs
several times
VM: no argo, no k8s
vs GKE cluster

No significant overhead.

31

Preemtible / spot nodes

◉ Considerably cheaper
○ ¼ - ½ price

◉ Nodes can be deleted any time
◉ A trial with a 90-node

e2-standard-4 cluster:
○ 13 / 90 nodes terminated
○ → 52 / 353 jobs failed

◉ Requires rerunning of the failed
jobs.

○ The price advantage is worth some
scripting for automated reruns.

Normal nodes Preemtible nodes

