Real-Time Track Reconstruction with Al

CLAS12 Collaboration

G.Gavalian (Jefferson Lab)

Outline

CLAS12 setup

- Track identification using AI
- Track Parameter Estimation using AILooking into the future

Jefferson Lab (Hall-B/CLAS12 Detector)

Jefferson Lab

JSA

G.Gavalian (Jlab)

CEBAF

- 12 GeV electron beam distributed to 4 experimental hall
- Each experimental hall contains a detector system for specific experiments

▶ Hall-B:

CEBAF Large Acceptance Spectrometer (CLAS12) Located in Hall-B

Central Detector:

- Silicon Tracker
- Time-Of-Flight
- Neutron Detector

Forward Detector:

- Drift Chambers
- Time of Flight
- High Threshold Cherenkov Counter
- Ring Imaging Cherenkov Counter
- Electromagnetic Calorimeter

Track Reconstruction (short history)

My First experience with Event Reconstruction **Rate**: ~0.0008 Hz (per person, assuming 20 min per event)

Earth Population: 4.767 billion

(2,135 kHz assuming 56% in the age bracket 21-65)

1983

2003

CLAS6 Detector (Jlab)

Rate: ~4-8 Hz

Computers: 8 core (2.4 GHz)

CLAS6 Detector (Jlab) Rate: ~2 Hz **Computers:** 64 cores (2.6 GHz)

- Big jump in track reconstruction in first 20 years
- No change in the second 20 years
- What's in the future?

Track Finding Procedure

- 6 sectors with 6 chambers in each sector (called super-layers)
- 6 wire planes in each super layer with 6-degree tilt relative to each other, (112 wires in each plane)

G.Gavalian (Jlab)

- Find segments in each super layer (remove noise)
- Combine 6 segments (one from each super layer) to make a list of possible tracks
- Identify correct combinations of segments that represent a track

What do we have now

G.Gavalian (Jlab)

CLAS12 Track Reconstruction with Artificial Intelligence Gagik Gavalian (Jefferson Lab), et all e-Print: 2205.02616 [physics.ins-det]

What do we have now

G.Gavalian (Jlab)

Regression Neural network to predict the track momentum and direction. The track momentum is reconstructed with an accuracy of 1.4%-1.7%

Event topologies can be cleanly identified using particle parameters inferred by the neural network.

Χ.

Track Reconstruction

Regression Neural network to predict the track momentum and direction. The track momentum is reconstructed with an accuracy of 1.4%-1.7%

Physics reactions can be cleanly identified using particle parameters inferred by the neural network.

Distributions calculated from track reconstruction from RAW Drift Chamber hits

U.S. DEPARTMENT OF

CHEP 2024

Track Reconstruction (performance)

Data Used in this study:

100 M triggered events in ~4 hours (CLAS12 DAQ ~12 kHz)

Conventional Data Processing:

768 cores used

10 hours processing time

AI track Reconstruction:

12 cores (MacBook M3)25 minutes processing time(8 kHz per/core, 96 kHz on M3)

Distributions calculated from AI track reconstruction from RAW Drift Chamber hits (Obtained in 25 minutes on MacBook M3)

Data Sorting

G.Gavalian (Jlab)

- events to be grouped.
- The online track processor can sort the raw data by particle topology.
- accordingly.
- This development will be crucial when transitioning to streaming readout.

CLAS12 uses a custom data format (HIPO) with a bucket tagging feature that allows similar

The work on particle IDs is in progress; with PID we can also identify reactions and tag

JSA

Physics Online (aka the future)

U.S. DEPARTMENT OF ENERGY

 $\begin{array}{c} {}^{1} 0.1 \\ d^{-1} \\ d^{-1} \\ d^{-1} \\ -0.1 \end{array}$

-0.2

ф. Ф. 0.0

©_ ⊡_ -0.

Physics

Data Acquisition

Software

G.Gavalian (Jlab)

- Many (our collaboration included) think that all AI/ML work is ONLY in Python
- The track reconstruction project, track classification, and track parameter prediction are done in Java (both training and deployment)
- The CLAS12 Reconstruction software is in Java; the AI track classifier and track predictor are easily integrated
- The DeepNetts library was used for all of the developments (https:// www.deepnetts.com)
- Java provides platform-independent software for training and validation software. Significantly simplifies the workflow.

CHEP 2024

Summary

G.Gavalian (Jlab)

- AI track identification (including denoising) is now part of the reconstruction framework.
- Using AI in reconstruction increased the statistics of existing experiments by ~60%-75%
- Due to improved single-particle efficiency, future experiments can run at higher luminosities, resulting in more data.
- The InstaRec reconstructs tracks at 8 kHz/core rate allowing physics online
- InstaRec allows us to select event topologies in real-time, improving data processing times.
- Further developments in particle identification will allow triggering in streaming data regimes and identify physics reactions at the DAQ level.

reconstruction

A

with

JSA

Backup

BACK UP SLIDES

G.Gavalian (Jlab)

Artificial Intelligence (short history) Artificial Intelligence Development History Timeline

G.Gavalian (Jlab)

CHEP 2024

Feasibility tests

G.Gavalian (Jlab)

U.S. DEPARTMENT OF ENERGY

- Clustering Algorithm:
 - Convolutional Neural network with logistic regression to identify possible cluster positions.
 - Currently at 97% efficiency
- Proposed work:
 - Investigate algorithms to identify clusters fast and with higher efficiency

Feasibility tests

- Initial Tests:
 - A Neural Network to predict the track's impact point on the calorimeter surface.
 - Capable of predicting position within one strip
- Future Developments:
 - Extend the network to predict the track's impact position with all the detectors on the track's path
 - Construct dependency graph for detector responses
 - Develop electron identification algorithm (first)
 - Develop general particle identification

h all

What do we have now

G.Gavalian (Jlab)

CLAS12 Track Reconstruction with Artificial Intelligence Gagik Gavalian (Jefferson Lab), Pet all e-Print: 2205.02616 [physics.ins-det]

