
23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch

Improvements of the GPU Processing 

Framework for ALICE

David Rohr for the ALICE Collaboration

CHEP 2024

23.10.2024

drohr@cern.ch

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 1

Targeting to record large minimum bias sample.

- All collisions stored for main detectors → no trigger but continuous readout

- Time frames of continuous data, overlapping collisions instead of events

- 100x more collisions than Run 2, much more data

- Cannot store all raw data → online compression

→ Use GPUs to speed up online (and offline) processing

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.

ALICE in Run 3

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 2

Targeting to record large minimum bias sample.

- All collisions stored for main detectors → no trigger but continuous readout

- Time frames of continuous data, overlapping collisions instead of events

- 100x more collisions than Run 2, much more data

- Cannot store all raw data → online compression

→ Use GPUs to speed up online (and offline) processing

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.

ALICE in Run 3

Outline:
• Fast executive summary of ALICE GPU processing

• Explain new features of ALICE GPU framework:

• Deterministic Mode

• Per-kernel compilation

• Object library for shared components

• Run Time Compilation

• Evolution of ALICE GPU online processing speed.

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 3

• During LHC operation:

• Online processing on GPUs.

• Compressed raw data stored to disk buffer.

• When no beam in LHC:

• Offline processing data from disk buffer on online farm.

• Offline processing always running in the GRID.

• Optionally use GPUs when possible.

• Online computing farm of 350 servers, 2800 GPUs.

• Baseline scenario:

• All that is mandatory for online processing:

Full TPC processing on GPU.

• Optimistic scenario:

• Try to offload more algorithms to GPU for

better GPU usage in offline.

Executive summary: ALICE online / offline processing

Data links from detectors

Disk buffer

R
u

n
 3

 f
a

rm

Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / reconstruction

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage

Compressed 

Raw DataReconstructed Data

3.5 TB/s

Readout nodes

< 900 GB/s

D
u

ri
n

g

n
o

 b
e
a

m

~ 170 GB/s

D
u

ri
n

g

D
a
ta

 t
a
k
in

g

See talk of last CHEP

mailto:drohr@cern.ch
https://indico.jlab.org/event/459/contributions/12432/


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 4

Processing step % of time

TPC Processing 61.41 %

ITS TPC Matching 6.13 %

MCH 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Offline processing

(650 kHz pp, 2022, no Calorimeters)

Processing step % of time

TPC Processing 99.37 %

EMCAL Processing 0.20 %

ITS Processing 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing 52.39 %

ITS Tracking 12.65 %

Secondary Vertexing 8.97 %

MCH 5.28 %

TRD Tracking 4.39 %

TOF Matching 2.85 %

ITS TPC Matching 2.64 %

Entropy Decoding 2.63 %

AOD Production 1.72 %

Quality Control 1.64 %

Rest 4.84 %

Offline processing

(47 kHz Pb-Pb, 2024)

Baseline scenario (today):

~60% on GPU

→ 2.5x speedup in offline

Baseline scenario (today):

Online processing totally 

dominated by TPC on GPU

Executive summary: GPU usage and speedup

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 5

Processing step % of time

TPC Processing 61.41 %

ITS TPC Matching 6.13 %

MCH 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Offline processing

(650 kHz pp, 2022, no Calorimeters)

Processing step % of time

TPC Processing 99.37 %

EMCAL Processing 0.20 %

ITS Processing 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing 52.39 %

ITS Tracking 12.65 %

Secondary Vertexing 8.97 %

MCH 5.28 %

TRD Tracking 4.39 %

TOF Matching 2.85 %

ITS TPC Matching 2.64 %

Entropy Decoding 2.63 %

AOD Production 1.72 %

Quality Control 1.64 %

Rest 4.84 %

Offline processing

(47 kHz Pb-Pb, 2024)

Baseline scenario (today):

~60% on GPU

→ 2.5x speedup in offline

Configuration (2022 pp, 650 kHz) Time per TF (7400 collisions)

8 * 16-core CPU workflow 4.27s

2 * 1 NUMA domain (4 GPUs + 64 cores) 1.70s

F
a
c

to
r

2
.5

1

Baseline scenario (today):

Online processing totally 

dominated by TPC on GPU

• One AMD MI50 GPU replaces 80 CPU cores. 

• Hypothetical CPU-only online farm would 

require more than 3000 64-core servers. 

• GPU usage mandatory for ALICE in Run 3.

Offline reco on GPU server

Executive summary: GPU usage and speedup

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 6

Processing step % of time

TPC Processing 61.41 %

ITS TPC Matching 6.13 %

MCH 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Offline processing

(650 kHz pp, 2022, no Calorimeters)

Processing step % of time

TPC Processing 99.37 %

EMCAL Processing 0.20 %

ITS Processing 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing 52.39 %

ITS Tracking 12.65 %

Secondary Vertexing 8.97 %

MCH 5.28 %

TRD Tracking 4.39 %

TOF Matching 2.85 %

ITS TPC Matching 2.64 %

Entropy Decoding 2.63 %

AOD Production 1.72 %

Quality Control 1.64 %

Rest 4.84 %

Offline processing

(47 kHz Pb-Pb, 2024)

Baseline scenario (today):

~60% on GPU

→ 2.5x speedup in offline

Optimistic scenario (future):

~80% on GPU

→ 5x expected in offline

Configuration (2022 pp, 650 kHz) Time per TF (7400 collisions)

8 * 16-core CPU workflow 4.27s

2 * 1 NUMA domain (4 GPUs + 64 cores) 1.70s

F
a
c

to
r

2
.5

1

Baseline scenario (today):

Online processing totally 

dominated by TPC on GPU

Offline reco on GPU server• One AMD MI50 GPU replaces 80 CPU cores. 

• Hypothetical CPU-only online farm would 

require more than 3000 64-core servers. 

• GPU usage mandatory for ALICE in Run 3.

Executive summary: GPU usage and speedup

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 7

NUMA Domain 1Online

Processing

DPL Workflow

Input goes to 

interleaved 

memory

NUMA Domain 2

4 processes 

and 4 GPUs 

per NUMA 

domain

• ALICE was running the GPU-enabled online workflow successfully for pp and Pb-Pb from 2022 to 2024.

• During 2023 Pb-Pb had 17% free GPU resources at highest interaction rate.

Executive summary: Experience running with GPUs

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 8

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

• ALICE was running the GPU-enabled online workflow successfully for pp and Pb-Pb from 2022 to 2024.

• During 2023 Pb-Pb had 17% free GPU resources at highest interaction rate.

• ALICE does vendor-independent GPU usage via generic common C++ Code.

• Can run on CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

Executive summary: Experience running with GPUs

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 9

• ALICE was running the GPU-enabled online workflow successfully for pp and Pb-Pb from 2022 to 2024.

• During 2023 Pb-Pb had 17% free GPU resources at highest interaction rate.

• ALICE does vendor-independent GPU usage via generic common C++ Code.

• Can run on CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• Planning to run full barrel tracking on GPU in optimistic scenario, to raise fraction on GPU from 60% to 80%.

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression

TPC Entropy 

Compression

TPC 

Track Fit

Working

In commissioning

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c

Executive summary: Experience running with GPUs

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 10

• Debugging GPU code / comparing results to CPU difficult if output is not deterministic / differs between CPU and 

GPU.

• So far we always thought: 

– Non-associative floating point math from e.g. –ffast-math makes the code indeterministic anyway.

– Thus we accept to anyway have small differences.

• We tried to keep the differences small, but accepted that

CPU / GPU output will not be identical.

Consistent / reproducible code on GPU and CPU

Inconsistenst GPU / 

CPU results

Presented as such several times 

see CHEP 2012 talk

mailto:drohr@cern.ch
https://indico.cern.ch/event/149557/contributions/1385757/


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 11

• Debugging GPU code / comparing results to CPU difficult if output is not deterministic / differs between CPU and 

GPU.

• So far we always thought: 

– Non-associative floating point math from e.g. –ffast-math makes the code indeterministic anyway.

– Thus we accept to anyway have small differences.

• We tried to keep the differences small, but accepted that

CPU / GPU output will not be identical.

• In 2024, started a new attempt to get it 100% identical and deterministic.

• Added “deterministic mode”: special slow mode for debugging.

– Prevents all concurrency-caused indeterministic behaviour and all differences between CPU and GPU.

– Combination of runtime setting (where possible) and different compile-options.

• Quite successful:

– Revealed several bugs in our code and GPU compiler (before, assumed to be small deviations due to parallelism).

• Note:

• Default mode: No performance impact at all.

• Deterministic mode: Severe performance impact, needs recompilation unfortunately.

– Quite unlikely case, but does not help for compiler bugs appearing only in normal mode.

Consistent / reproducible code on GPU and CPU

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 12

• Modifications for fully deterministic and identical CPU and GPU results:

• At runtime:

– Additional GPU sorting kernels (executed after kernels whose order of the output is not deterministic, preserving all 

links, e.g. cluster to track attachment).

– Disable parallel processing in some cases.

– Slower deterministic algorithms in some cases.

Consistent / reproducible code on GPU and CPU

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 13

• Modifications for fully deterministic and identical CPU and GPU results:

• At runtime:

– Additional GPU sorting kernels (executed after kernels whose order of the output is not deterministic, preserving all 

links, e.g. cluster to track attachment).

– Disable parallel processing in some cases.

– Slower deterministic algorithms in some cases.

• At compile-time:

– FMA and –ffast-math must be disabled.

– Fast math approximations like fast inverse square root, etc. are disabled.

– Enforce consistent behaviour for denormalized float values.

– Make sure trigonometric functions and other math functions are consistent.

– No IEEE float standard requirement for full accuracy.

– Only need FP32 for GPU code, so compute in FP64 and round to FP32. 

– All sorting must use a total ordering (add bytewise sorting on top for partial orders).

– Some indeterministic algorithms are replaced by slower deterministic ones.

• Performance impact: 2x to 10x slower (mostly due to sorting), 2x memory requirement.

Consistent / reproducible code on GPU and CPU

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 14

• Modifications for fully deterministic and identical CPU and GPU results:

• At runtime:

– Additional GPU sorting kernels (executed after kernels whose order of the output is not deterministic, preserving all 

links, e.g. cluster to track attachment).

– Disable parallel processing in some cases.

– Slower deterministic algorithms in some cases.

• At compile-time:

– FMA and –ffast-math must be disabled.

– Fast math approximations like fast inverse square root, etc. are disabled.

– Enforce consistent behaviour for denormalized float values.

– Make sure trigonometric functions and other math functions are consistent.

– No IEEE float standard requirement for full accuracy.

– Only need FP32 for GPU code, so compute in FP64 and round to FP32. 

– All sorting must use a total ordering (add bytewise sorting on top for partial orders).

– Some indeterministic algorithms are replaced by slower deterministic ones.

• Today available to all GPU detector code (not only TPC).

– Plot shows bit-by-bit identical result of ITS track fit comparing CPU to CUDA.

Consistent / reproducible code on GPU and CPU

See talk of Matteo Concas

mailto:drohr@cern.ch
https://indico.cern.ch/event/1338689/contributions/6010099/


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 15

• Up until 2024, ALICE compiled all GPU code (per backend) in one big file aggregating all GPU kernels.

• With > 100 kernels, compile time became a serial bottleneck, will get worse in the future.

Per-kernel compilation / per-kernel compile flags

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 16

• Up until 2024, ALICE compiled all GPU code (per backend) in one big file aggregating all GPU kernels.

• With > 100 kernels, compile time became a serial bottleneck, will get worse in the future.

• Attempted CUDA and ROCm RDC (relocatable device code: separate compilation, then link together).

• Works, but:

– GPU compiler assumes too high number of available registers for some functions.

– Must manually set the register limits (depending on GPU architecture / in which functions they are used).

– Observed up to 10% performance degradation.

• Thus, decided not to use RDC for the majority of the GPU code.

– Still available if desired by developers of detector GPU code.

Per-kernel compilation / per-kernel compile flags

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 17

• Up until 2024, ALICE compiled all GPU code (per backend) in one big file aggregating all GPU kernels.

• With > 100 kernels, compile time became a serial bottleneck, will get worse in the future.

• Attempted CUDA and ROCm RDC (relocatable device code: separate compilation, then link together).

• Works, but:

– GPU compiler assumes too high number of available registers for some functions.

– Must manually set the register limits (depending on GPU architecture / in which functions they are used).

– Observed up to 10% performance degradation.

• Thus, decided not to use RDC for the majority of the GPU code.

– Still available if desired by developers of detector GPU code.

• Implemented framework to compile each kernel in a separate compilation unit using CMake.

• List of kernels moved from C++ header to CMake (C++ headers auto-generated).

• Explicitly calling nvcc and hipcc to compile individual kernels to binary output files.

• Loaded via cuModuleLoad and hipModuleLoad (as for RTC code, see later).

• Optimal kernel performance (compiler can optimize all used functions for the very kernel).

• Parallel fast compilation (measured in wall time, while CPU time actually increases a bit).

Per-kernel compilation / per-kernel compile flags

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 18

• ALICE GPU strategy: provide common framework code, but allow detectors to be as independent as they want.

• May use common features (e.g. per-kernel compilation).

• May opt to compile .cu and .hip files manually via CMake.

– Usually still need common components like geometry, propagator, etc.

– Common GPU framework components available as externalProvider CMake object library.

– One limitation: must use RDC (needed for linking multiple GPU objects files).

Shared components / Constant memory

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 19

• ALICE GPU strategy: provide common framework code, but allow detectors to be as independent as they want.

• May use common features (e.g. per-kernel compilation).

• May opt to compile .cu and .hip files manually via CMake.

– Usually still need common components like geometry, propagator, etc.

– Common GPU framework components available as externalProvider CMake object library.

– One limitation: must use RDC (needed for linking multiple GPU objects files).

• One general unsolved problem for ALICE is constant memory.

• Common components use constant memory.

• In theory, one single global instance could hold all constants.

• But CUDA / HIP have one instance per compilation unit (non-RDC code) or one instance per library (RDC code).

– Impossible to use a single GPU memory buffer for all components.

• Current ALICE workaround:

– Per-kernel compilation units and externalProviders register their constant memory buffers.

– Transparent for the user using weak symbols.

– Constant memory writes automatically update all instances.

• Works, but huge increase of constant memory writes (>100 writes to update a single global value).

Shared components / Constant memory

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 20

• Use runtime configuration knowledge to create faster code.

• ALICE uses Run Time Compilation (RTC) to recompile device code at runtime with optimizations.

– Using the same infrastructure as for per-kernel-compilation (last slide).

– Source code embedded in GPU library, nvcc / hipcc compile the code at runtime, loaded with ModuleLoad API.

– Cannot use CUDA / ROCm RTC libraries, cause problems with cub and thrust.

– Want to extend RTC to OpenCL in the future, and perhaps even to CPU code with clang.

Run Time Compilation

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 21

• Use runtime configuration knowledge to create faster code.

• ALICE uses Run Time Compilation (RTC) to recompile device code at runtime with optimizations.

– Using the same infrastructure as for per-kernel-compilation (last slide).

– Source code embedded in GPU library, nvcc / hipcc compile the code at runtime, loaded with ModuleLoad API.

– Cannot use CUDA / ROCm RTC libraries, cause problems with cub and thrust.

– Want to extend RTC to OpenCL in the future, and perhaps even to CPU code with clang.

• Special treatment for joint multi-core compilation on the online farm:

– Online farm has 8 GPUs, driven by 8 different OS processes.

– RTC code compiled once, stored in cache, and reused (if same settings), synchronized with file locks.

– CPU affinity pinning must be released to use all cores for compilation.

Run Time Compilation

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 22

• Use runtime configuration knowledge to create faster code.

• ALICE uses Run Time Compilation (RTC) to recompile device code at runtime with optimizations.

– Using the same infrastructure as for per-kernel-compilation (last slide).

– Source code embedded in GPU library, nvcc / hipcc compile the code at runtime, loaded with ModuleLoad API.

– Cannot use CUDA / ROCm RTC libraries, cause problems with cub and thrust.

– Want to extend RTC to OpenCL in the future, and perhaps even to CPU code with clang.

• Special treatment for joint multi-core compilation on the online farm:

– Online farm has 8 GPUs, driven by 8 different OS processes.

– RTC code compiled once, stored in cache, and reused (if same settings), synchronized with file locks.

– CPU affinity pinning must be released to use all cores for compilation.

• Optimizations currently used for RTC:

– Configuration parameters constant during a run are replaced with constexpr constants.

– Allows the compiler to optimize away a lot of unused code and reduce number of branches.

– Code used only in offline processing is removed in online to reduce branches (hidden by #ifdef).

Run Time Compilation

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 23

• Use runtime configuration knowledge to create faster code.

• ALICE uses Run Time Compilation (RTC) to recompile device code at runtime with optimizations.

– Using the same infrastructure as for per-kernel-compilation (last slide).

– Source code embedded in GPU library, nvcc / hipcc compile the code at runtime, loaded with ModuleLoad API.

– Cannot use CUDA / ROCm RTC libraries, cause problems with cub and thrust.

– Want to extend RTC to OpenCL in the future, and perhaps even to CPU code with clang.

• Special treatment for joint multi-core compilation on the online farm:

– Online farm has 8 GPUs, driven by 8 different OS processes.

– RTC code compiled once, stored in cache, and reused (if same settings), synchronized with file locks.

– CPU affinity pinning must be released to use all cores for compilation.

• Optimizations currently used for RTC:

– Configuration parameters constant during a run are replaced with constexpr constants.

– Allows the compiler to optimize away a lot of unused code and reduce number of branches.

– Code used only in offline processing is removed in online to reduce branches (hidden by #ifdef).

• Helps to provide software release for larger set of device architectures:

– ALICE CVMFS builds currently contain only device code for 1 NVIDIA and 2 AMD GPU models.

– With RTC, device code for the current architecture can be created on the fly, without blowing up CVMFS build time.

Run Time Compilation

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 24

• ALICE GPU code still under heavy development.

• New features and code changes caused aggregate slowdown of 43.8% in 2024

– Some of the code only needed for offline but affecting online performance.

• New features (e.g. RTC) and code optimization could regain most of it, aiming for 9% faster code than 2023 eventually.

• Note that this table sums up effects of individual commits related to a topic, not following the real chronological order of commits, thus ignoring all 

interplay of the commits. This is not fully precise but gives an overview.

• All speedups / slowdowns here are normalized to the 2023 Pb-Pb time. Measuring step by step would give other percentages.

• Measured on a reference MC time frame with 100 Pb-Pb collisions on an online compute node with AMD MI50 GPU.

Software version Time per TF Performance impact Performance vs 2023 Pb-Pb

2023 Pb-Pb software version 3.430 s 0.0 % 0.0 %

Build average q, use q in cluster errors 3.832 s -11.7 % -11.7 %

Dead channel map + V/M shape correction map 4.678 s -24.6 % -36.4 %

Unrelated change in MatLUT causing ROCm compiler problem 4.812 s -3.9 % -40.3 %

IFC cluster errors 4.898 s -2.5 % -42.8 %

Other changes 4.934 s -1.1 % -43.8 %

Code improvements, fix MatLUT problem, better compile flags 4.756 s +5.2 % -38.6 %

RTC constexpr optimization 4.572 s +5.4 % -33.3 %

Today: RTC mitigation for V/M shape corrections 3.875 s +20.3 % -13.0 %

In the future: merge TPC corrections in single transform map 3.126 s +21.8 % +8.9 %

TPC Processing speed evolution since 2023 Pb-Pb

mailto:drohr@cern.ch


23.10.2024
drohr@cern.ch

David Rohr, drohr@cern.ch 25

• ALICE employs GPUs heavily to speed up online and offline processing.

• 99% of synchronous reconstruction on the GPU (no reason at all to port the rest).

– Smooth online operation from 2022 to 2024.

• Today ~60% of full asynchronous processing (for 650 kHz pp) on GPU yielding 2.5x speedup on GPU farm.

– Will increase to 80% with full barrel tracking (optimistic scenario), aiming for 5x speedup.

• Continuous development of GPU code.

• New features need additional processing time, but code is also continuously improved, aiming for 10% faster code 

next year.

• Several new ALICE GPU framework features available:

• Per-kernel compilation improves compile time.

• Run-Time-Compilation RTC enables additional optimization, and creates device code for additional architectures on the fly.

• Deterministic mode helps debugging and validation, revealed several code and compiler bugs.

• Relocatable device code makes common components available to external libraries where needed.

Conclusions

mailto:drohr@cern.ch

	Slide 0: Improvements of the GPU Processing Framework for ALICE
	Slide 1: ALICE in Run 3
	Slide 2: ALICE in Run 3
	Slide 3: Executive summary: ALICE online / offline processing
	Slide 4: Executive summary: GPU usage and speedup
	Slide 5: Executive summary: GPU usage and speedup
	Slide 6: Executive summary: GPU usage and speedup
	Slide 7: Executive summary: Experience running with GPUs
	Slide 8: Executive summary: Experience running with GPUs
	Slide 9: Executive summary: Experience running with GPUs
	Slide 10: Consistent / reproducible code on GPU and CPU
	Slide 11: Consistent / reproducible code on GPU and CPU
	Slide 12: Consistent / reproducible code on GPU and CPU
	Slide 13: Consistent / reproducible code on GPU and CPU
	Slide 14: Consistent / reproducible code on GPU and CPU
	Slide 15: Per-kernel compilation / per-kernel compile flags
	Slide 16: Per-kernel compilation / per-kernel compile flags
	Slide 17: Per-kernel compilation / per-kernel compile flags
	Slide 18: Shared components / Constant memory
	Slide 19: Shared components / Constant memory
	Slide 20: Run Time Compilation
	Slide 21: Run Time Compilation
	Slide 22: Run Time Compilation
	Slide 23: Run Time Compilation
	Slide 24: TPC Processing speed evolution since 2023 Pb-Pb
	Slide 25: Conclusions

