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CMS Phase-2 Global Trigger
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CMS Phase-2 Global Trigger

A lot of work done by the GT
team in the past years!

• Algorithms share the same input and
output structure

• Fixed latency for all of them

• Each algorithm can be placed wherever we
want in terms of board and
Super-Logic-Region
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Beyond the cut-based algorithms @ P2GT
Goals

• Implement ML algorithms in Global Trigger FPGAs
• Explore different ML algorithms architectures, Deep Neural networks, Boosted Decision Trees and

so on

Hardware implementation constraints
• Latency: Algorithms must fit into ∼8 BX (200 ns)

• total budget 1 µs, part of it will be used by the existing GT infrastructure, time
de-multiplexing logic and data transmission

• Resources: Up to 12 boards for the full Phase-2 menu
• as of today we can fit ∼1000 traditional cut-based algos in 3-4 Serenity boards equipped
with VU13P FPGA parts (Virtex Ultrascale+)

FPGA LUT [k] FF [k] DSP BRAM [Mb] URAM [Mb] N SLR
VU13P 1,728 3,456 12,288 94.5 360.0 4
VU9P 1,182 2,364 6,840 74.9 270.0 3
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P2GT NN development workflow

Model definitoon and training with the commonly
used frameworks.

Python model transaltion to HLS and finally to
HDL.

Hyperparemeter quantization, model
compression via pruing and knowledge
distilalition.

Interface layer to adjust input and output data
formats. 
Bitfile generation for the target FPGA.

Step 1 : Model definition

Step 2 : Optimizations

Step 3 : FPGA Porting

Step 4 : Interfaces and Deploy
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Studied architectures

Binary Classifier Auto-Encoder

Pros

• Generally small footprint

• Straight forward training

Cons

• Need to train one model for each signal signature

Pros

• 1 model to tackle different scenarios

Cons

• Model is very large

• Usually quite resource hungry

• Training not as straight forward as BC
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Input variables
Candidate objects comes from different subsystems and up to 12 objects per collection are available every BX
(40 MHz).

L1T Objects L1T subsystem Binary Classifier Auto-Encoder

Jets CL2 pT , η pT , η, ϕ

Electrons CL2 pT , η, Iso, Qual pT , η, ϕ

Muons GMT pT , η, Qual pT , η, ϕ

Photons CL2 pT , η, Iso, Qual pT , η, ϕ

Taus CL2 pT , η pT , η, ϕ
Missing energy CL2 Emiss

T Emiss
T , ϕ

HT and MHT GTT HT , H
miss
T HT , H

miss
T

Invariant masses GT Mii Mii

The invariant mass is computed at the GT level, more on that calculation later.
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Binary classifiers
Two architectures are studied: Deep Neural Networks (DNN) and Boosted Decision Trees (BDT).

DNN BDT

• Need to be pruned and quantized to be
implementend in FPGA

• Uses DSPs to compute multiplications

• To better perform it needs a normalizer at
the input stage

• Chain of logical decision

• No quantization or pruning is required

• No need of a normalizer at the input stage
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Auto-Encoder
Deep auto-encoder requires more inputs, add the φ variable as well.

• Trained only with background events

• Encode the input in a smaller latent space
and then decode it back to its original size

• Plain Auto-Encoder is too large to be
implemented in the FPGA fabric, knowledge
distillation is a must!

ZEncoder Decoder

Reconstruction error

CHEP 2024, 24th October 2024 9



Knowledge distillation
• Such auto-encoders cannot be deployed on FPGAs due to the size and speed limitations
• Use another model (the student) and train it with the anomaly score computed with the AE (regression

problem)
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Neural Network pre-processing
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Data are streamed at 480 MHz, parameters are updated on each clock cycle. Output resizing is applied
to match the neural network fixed-point precision.

• Clock domain crossings from 480 MHz to 240 MHz and vice versa
• It uses one DSP per input variable (for the whole collection)
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Neural Network pre-processing -scaler-
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Data are streamed at 480 MHz, parameters are updated on each clock cycle. Output resizing is applied
to match the neural network fixed-point precision.

• Clock domain crossings from 480 MHz to 240 MHz and vice versa

• It uses one DSP per input variable (for the whole collection)
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Add invariant masses
Exploring the use of invariant mass.

• We already have the infrastructure to compute those (double object conditions)
• Just need a wrapper to prepare such variable for the hls4ml module
• At the hardware level we compute the square of the invariant mass, use the log2 to scale it down to

reasonable range (easier to compute then the square root).
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Invariant Mass computation

inv_mass_Mjj_comp_i : entity work.NN_invmass_calc

generic map(

collections => (CL2Jets, CL2Jets),

SELECTED_BXs => (others => 0)

)

port map(

clk_algo => clk_algo,

rst_algo => rst_algo,

objects_valid_bx => objects_valid_bx,

objects_bx => objects_bx,

invMass_o => invMjj_val,

valid_o => Mjj_valid_out

);

• Possibility to use any collections, e.g. Jets,
Muons, ...

• Mathematical functions are stored in LUTs (cosh,
cos)

• One collection is stored while the other one is
streamed

• Result is a 12 objects vector at 480MHz (144
values per BX)

• Neglect the diagonal in the case of same
collection

M2

2
= pT1pT2︸ ︷︷ ︸

DSP

(cosh(∆η)︸ ︷︷ ︸
LUT

− cos(∆φ)︸ ︷︷ ︸
LUT

)
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GT implementation
Some precautions needs to be considered if we want to implement these NNs:

• We could have other algos in the SLR! → routing congestion could arise
Solution: Add some registers before and after the NN to help the router

• We are running at 480 (GT logic) and 240 (NNs) MHz → deal with timing violations
Solution: Aggressive implementation strategies + Multi-cycle path constraints

• VITIS HLS complier doesn’t have place & route knowledge → bigger NNs cannot be implemented
Solution: Increased HLS compiler target frequency to 300 MHz

GT demultiplexers and distribution

NNs interfaces
Neural Networks

TTC & DMA
Link buffers

Figure: Full design floorplan (VU13P). 4 auto-encoders (student, red) with high level features as inputs.
Pre-processing highlighted in green
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Summary and Outlook
Summary

• Designed multiple small and mid-size deep NNs and BDTs

• Developed interface logic to integrate these into the P2GT
firmware

• Invariant masses, isolation and quality

• Latency and resources usage under control

• Developed baseline strategy to meet timing closure

Outlook

• Finalize invariant mass wrapper module

• Implement Variation Auto-Encoder (similar to what is
running now in the µGT)

Z

μ

σ

Encoder Decoder

Reconstruction error + KL divergence

Sampling
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BACKUP

CHEP 2024, 24th October 2024 17



P2GT latency break-down

- BX ns
Total 40 1000
Links 16 400

De-multiplexer 6 150
Int. BX delay 3 75

FinOR ∼4 100
SLR distrib ∼3 75

Algos ∼8 200
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