
Developments of an FPGA based track reconstruction pipeline for the
ATLAS event filter

Haider Abidi

On behalf of the ATLAS TDAQ collaboration

Oct 24, 2024

ATLAS & HL-LHC upgrade
• LHC and ATLAS are constructing upgrades to continue ensure physics reach

• New conditions are challenging - an average of 200 simultaneous collisions
(pile-up) per bunch crossing are expected

• New detectors, such as new inner tracking detector to allow high-precision
reconstruction of charged particle tracks (ITk), are being constructed

• The ATLAS trigger system will upgraded to cope with these conditions
• Tracking at trigger level is essential to control rates while maintaining

good efficiency for relevant physics processes

2

<μ> = 23

Current environment inside ATLAS
at LHC

Expected environment inside ATLAS
at HL-LHC

<μ> = 140

Link

https://cds.cern.ch/record/2257755?ln=en

ATLAS TDAQ System for HL-LHC

• Two tiered system for triggering
• Level-0 - Hardware based trigger to reduce rate from 40 MHz to 1

MHz
• Event filter system - higher level triggering system with “precision”

reconstruction algorithm to reduce the rate to 10kHz
• Event filter system will perform track reconstruction for various selected

physics processes:
• Perform regional tracking in Regions of Interest defined based on

objects identified at Level-0
• Used to verify the presence of high-pT tracks in single lepton

triggers and to associate objects to a common vertex
• Run full-scan tracking at a reduced rate after the regional tracking for

jets and Et miss signatures
• Large radius tracking for exotics signal

• Focuses on tracks with high impact parameters like those resulting
from the decays of Long Lived Particles

3

Link

https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf

EF Tracking System

• Originally assumed a hardware-based track reconstruction based on
associative memory ASICs and FPGAs
• Lower requirements on input rate (4MHz→1MHz)
• Software tracking improvements
• The rise of commercial accelerator cards

• Revisited the solution for EF Tracking (Link)- “ATLAS commit to a
commercial solution for EF Tracking at HL-LHC,”
• Heterogeneous devices (e.g., GPUs and FPGAs) allow the CPU to

offload specialized tasks, and may provide power saving and/or
throughput increase

• Changed planed with respect to the original assumption

• Exploring CPU, GPU and FPGA based solutions - Technology choice in

2025
• Focus on CPU + FPGA based solutions for this talk

• Emphasis on the FPGA implementation compared to algorithmic
details

4

Link

https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf
https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf

Tracking On FPGA in a Nutshell

5

Sliding window which can be optimized for FPGA solution• Track reconstruction is typical divided into multiple steps
• Certain steps are more efficient on CPUs than FPGA

• Example: A full precision track fit using Kalman filter is almost impossible to port to FPGA to the large memory
requirement

• However, data transfer between CPU and FPGA card has a latency overhead
• Leads to a situation where the boundary between CPU and FPGA has to be optimized for best physics performance
• Focus on one example solution for each step - final pipeline still to be decided

Data Preparation

6

• Data from the detector has to be processed to create the “clusters” which are used for
tracking
• Multi-step process with simple algorithms that can take advantage of FPGAs

• Each step is implemented as separate a FPGA kernel within the Xilinx Vitis workflow

• Performance is individually tested through test vector created from full physics simulation
• Successfully compiled into a single FPGA binary with strict requirements for interfacing

• Limited resources required for these steps

Raw detector information Clustering Local to global

Unpack detector data to
identify which sensors

have been fired
Combine neighbouring
sensors to form cluster

Compute centroid and
provide a global position

of the cluster

Rest of FPGA
pipeline Clustering (Pixel)

Clustering (Strip)

Local to global (Pixel)

Local to global (Strip)

Static
Platform

User
code

Resource usage in Alveo U250

Floor plan for
Data prep kernel

Pattern Recognition

7

• Raw clusters need to be grouped into track candidates
• Extremely complex problem due to combinatorial growth

• Classical solution such as Kalman Filter are not easily portable to FPGA
• Conformal transforms (eg Hough transform) are simpler algorithms that

provides the same output
• Optimized for FPGA implementation by using a shift-register inspired

implementation
• One of the different potential ideas being explored

Hough Transform -
group track candidate based on a conformal transform

Get Clusters Fill “bins” in
memory

Retrieve results
for a slice

Shift operation for
track candidates

1D bitshift
Algorithm

Pattern Recognition

8

• Implementation has been refined from previous implementation
• Designed to fit within one super logic region in a FPGA
• Similar testing procedure with testbeds using full physics simulation

• Multiple copies of the same kernel for parallelization have been tested and gives
similar results as single one
• One static platform for communication with the memory blocks

Static
Platform

Floor plan for
Bit shift pattern algorithm

Refinement of algorithm for optimized physics performance

Fitting multiple kernels on
one FPGA

ML Algorithm for Tracking
• Conformal transform is a relative simple/cheap pattern recognition

algorithm
• Cost: Lot of fake hit combinations & No figure of merit on fit quality

• Need to preform a preliminary “Ambiguity resolution” without using the
time consuming fit for each track
• Leverage the performance of ML to predict this figure of merit?

• Classify a vector of x/y/z position coordinates as coming from a
'true or fake track’

• Large reduction in the fake tracks with relatively high efficiency!
• Reject tracks with low score
• This AI/ML idea allows conformal transform algorithm to fit within the

data bandwidth requirements and enable this pipeline for FPGAs

9

Fake rejection algorithm

Link

Limited resources
used by the NN

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

AI/ML on accelerators

10

• Use HLS4ML to convert the ML algorithm for FPGA implementation
• Understanding limitation, creating implementation, validating

inference calls
• Establishing pruning/quantization strategies for efficient

implementation
• For FPGAs, the Vitis kernel flow has been established & validated

for NNs
• Matrix multiplication is perfectly pipelined
• For N evaluations, total latency is O(N + constant), not O(constant*N)

• Overall footprint of this ML algorithm with the overlap removal on
FPGA is small

Validation of NN on FPGA

Clock

New input at each clock cycle

New output at each clock cycle
After 10 clock cycles
for calculation

Floor plan of the
overlap removal code Static

Platform

User
code

https://fastmachinelearning.org/hls4ml/

Integration in Athena

11

• Pipelines are required to start/end in Athena, the ATLAS software base which
control the overall algorithm flow
• All algorithms need ‘plumbing’ to make this happen - common for any

accelerator choice
• Accelerators require complex data transfer and EDM management

• FPGAs communication have been established and validated in Athena
• Work ongoing to characterize data transfer rates in realistic conditions

• Accelerator algorithm need to interface to CPU based Kalman fitter for precision fits
• Accomplished through developing interface in collaboration with CPU developers

• On going work to convert FPGA data formats to CPU formats

Generic CPU interface for
all accelerator based algorithms

Data Transfer latency

Integration and Testing

12

• Integrating FGPA development is complex - large dependancy on exact software versions and data
transfer/format between kernels need to be agreed upon
• Additionally, stable physics performance is required as the system gets closer to deployment

• Developed a full gitlab based CI pipeline to ensure that each kernel is compiled and linked with the
same software version
• Ongoing work to use FPGA-based testbed to run full hardware kernel and monitor output &

performance through development cycle
• Updating to use the latest Vitis version

CI pipeline for various hardware kernels

Conclusions

13

• Ongoing redesign of the EF Tracking for Phase-II upgrade of ATLAS
• Commodity systems based on CPUs/GPUs/FPGAs identified as viable solutions in the amendment

of the TDAQ technical design report
• Developing tracking algorithms for trigger on accelerator requires innovation and adaptation of current

paradigms
• Initial demonstrator with hardware implementation has been developed and is being integrated

together
• The next year will be used to optimize the performance and work towards the technology choice for

next year

