

FPGA-RICH: a low-latency, high-throughput online particle identification system for the NA62 experiment

Pierpaolo Perticaroli

(INFN Roma, APE Lab)

27th International Conference on Computing in High Energy & Nuclear Physics CHEP 2024 Krakow – 24th October 2024

The NA62 Experiment at CERN SPS

75 GeV secondary hadron beam (6% kaons), nominal rate 750MHz

10 MHz event rate

NA62 Data Acquisiton and Low Level Trigger

- Some detectors send raw data *trigger-primitives* to the FPGA-based level-0 trigger processor LOTP over 1GbE UDP links.
- Read out boards (TEL62) generate trigger-primitives and buffer detector events while waiting for L0 trigger (max latency 1ms).
- LOTP checks configurable conditions (Masks) against the physics information inside the primitives (Energy, hit multiplicity, position, ...) to deliver trigger.
 Data bursts ~ 5s long

NA62 Data Acquisiton and Low Level Trigger

- Some detectors send raw data *trigger-primitives* to the FPGA-based level-0 trigger processor LOTP over 1GbE UDP links.
- **Read out boards (TEL62)** generate trigger-primitives and buffer detector events while waiting for L0 trigger (max latency 1ms).
- LOTP checks configurable conditions (Masks) against the physics information inside the primitives (Energy, hit multiplicity, position, ...) to deliver trigger.
 Data bursts ~ 5s long

The Ring Imaging Cherenkov detector (RICH)

- About 2000 PMT tubes
- During offline data analysis, it provides PID to distinguish between pions and muons from 15 to 35 GeV
- Current L0 primitives contain only number of HIT PMTs

RICH primitives: Number of hit-PMTs

RICH primitives: Number of hit-PMTs

FPGA-RICH: (partially) reconstruct the rings geometry online using an AI algorithm on FPGA, to generate a refined primitive stream for LOTP.

an AI algorithm on FPGA, to generate a refined primitive stream for LOTP.

x30

Number of rings (0, 1, 2, 3+) (more in the future, e.g. # of e^{-})

FPGA-RICH: (partially) reconstruct the rings geometry online using an AI algorithm on FPGA, to generate a refined primitive stream for LOTP.

The main challenge is the processing throughput (10 MHz).

Past work: GPU-RICH

http://dx.doi.org/10.1088/1742-6596/1085/3/032022

- To sustain high throughput, GPU's parallel architecture has to be exploited on multiple data → need to 'halt' event data stream through a buffering phase, accumulate, then transfer to GPU memory
- High latency ~100 µs relatively to other primitive generating sub-detectors (~ 1µs) → complicates LOTP checks and buffering for time alignment

FPGA provides low-latency, full streaming solution working as any other sub-detector

- Customizable I/O and deterministic latency make them well suited for TDAQ systems.
- Improvements to silicon manufacturing process made them very interesting for heavy computation as well.
- In our case, the challenge is the processing throughput → a pipelined design can potentially produce a new output at each clock cycle.
- Initiation interval (II): Number of clock cycles before the function can accept new input data.
 The lower the II, the higher the throughput
- The greater the number of pipeline stages, the greater the latency.
- High level synthesis tools allows to describe datapaths in FPGA using high level software languages (C/C++, OpenCL, SYCL,...).

NN Implementation Workflow and Dataset

TensorFlow

Vivado[™] HLS

Low-bit precision model

32-bit precision model

HLS model

FPGA Iterate to

Iterate to find compromise between computational resources, throughput, and NN accuracy

• DATASET:

- Training (3M events) and Test dataset (2M) obtained from real data from CERN EOS, using the NA62 analysis framework and a custom analyser. Dumping rings number, radius, number of e⁻ with checks on radius or EoP, from different offline analysis algorithms
- Ground-truth: Number of rings from offline trackless reconstruction algorithm that uses only PMT hits
- Train to be as good online as the best offline algorithm

NN Architectures: Convolutional Model

Input representation: 16x16 images

- Output: 4 classes (0, 1, 2, 3+ rings)
- Quantization (fixed point):
 - Weights and biases: 8 bits <8, 1>
 - Activations:16 bits <16, 6>
- FPGA resource usage (Alveo U200)
 - LUT 5.2%, FF 1.5%, DSP 4.8%,
 - BRAM 0.05%
- Latency: <u>388 cycles</u> @ 220MHz
- Initiation Interval (II): <u>369 cycles</u>
- Throughput: <u>0.6 MHz</u>

Very small NN: 2 x Conv (8 size filter, K=3x3) + Mpool (Stride=2) 2 x Dense(128→16, 16->4)

Class	0 (0 rings)	Efficiency 88.4	Purity 95.4
Class	1 (1 rings)	Efficiency 88.5	Purity 87.3
Class	2 (2 rings)	Efficiency 78.3	Purity 70.3
Class	3 (3+ rings)	Efficiency 74.3	Purity 85.1

Efficiency = TP / (TP + FN) Purity = TP / (TP + FP)

NN Architectures: Dense Model

200

100

-100

-300

-500

-400

(mm)

- **Quantization < fixed point >:**
 - Weights and biases: 8 bits <8, 1>
 - Input: 6 bits (unsigned int),
 - Activations:16 bits <16, 5>
- **FPGA** resource usage (Versal VCK190) -200 - LUT 7.2%, FF 2.2%, DSP 7.4%, BRAM 0.0%
- Latency: 28 cycles @ 300MHz
- Initiation Interval (II): <u>9 cycles</u>
- Throughput: <u>33 MHz</u>

Class	0 (0 rings)	Efficiency 88.9	Purity 95.0
Class	1 (1 rings)	Efficiency 88.9	Purity 86.5
Class	2 (2 rings)	Efficiency 76.3	Purity 72.2
Class	3 (3+ rings)	Efficiency 77.1	Purity 84.6

Final throughput including input construction from RICH data stream depends on event hits-number: ≈ 23 MHz for avg event, latency 160 ns, at 300 MHz

Integration of the FPGA-RICH Pipeline

- Retro-fit of the RICH readout
- Custom firmware on the TEL62 boards for FPGA-RICH dataflow. Send compressed UDP packets of PMT-hits event data through 8x1GbE links (2xTEL62, time-multiplexed) every 12.8 μs
- Each TEL62 handles 512 PMT channels of ≈2000 total, so each stream's events are fragments of a full physics event

Merging stage

merge four boards event-fragments by timestamp into full RICH physics events for NN Kernel

Synchronization stage

accumulate primitives in packets and send them every 6.4us as required by LOTP.

Merging Stage

Merge by timestamp:

take smallest timestamp among incoming streams as base and merge events from other streams in a fixed time window

- Limited clock cycle budget for a set of packets: Event-packets every ≈ 12.8 us. Have to consume a set of packets every ≈ 3800 clock cycles on average, at 300 MHz
- Sensible to time misalignment: Any corrupted and time misaligned stream has to be "merged" only with itself in a slow non-parallel operation, wasting clock cycles

Merge by timestamp:

take smallest timestamp among incoming streams as base and merge events from other streams in a fixed time window

- Limited clock cycle budget for a set of packets: Event-packets every ≈ 12.8 us. Have to consume a set of packets every ≈ 3800 clock cycles on average, at 300 MHz
- Sensible to time misalignment: Any corrupted and time misaligned stream has to be "merged" only with itself in a slow non-parallel operation, wasting clock cycles

Can constrict throughput

Pipeline Validation

- Tested in the lab with fpga-based emulator of TEL62 streams, using artificially generated events and dumps of real TEL62 data
 - With artificial events measured: Latency ~ 1 μs Throughput > 9.38 MHz at 150 MHz clock
- Completed synthesis at 300 MHz

 Deployed at the experiment and tests ongoing with beam in parasitic mode (independent from standard experiment dataflow)

- Issues affecting custom TEL62 firmware for FPGA-RICH dataflow currently compromise merger time alignment. Pipeline works for part of the burst, then stalls when event rate rises
- Difficult to change firmware during run, but we are working around issues at our end by flushing corrupted data

FUTURE WORK

See Ottorino Frezza's <u>talk</u> from past Monday

- Integrate FPGA-RICH with LOTP+ FPGA (FPGA-RICH Utilization: LUT = 14%, BRAM = 3%, DSP = 7% FF=6% (VCK190))
- Expand PID capabilities: e.g. predict number of electrons, combining data stream from calorimeter

Thank you!

BACKUP SLIDES

New functionalities

L0TP+ reproduces all L0TP functions but considering the huge amount of FGPA resources (only 30 % BRAM, 17 % LUT used in L0TP+) there is room to add several capabilities to the original design.

• DATA LINKS:

the system is able to support ten 25GbE links through the FMC+ daughercard, and additional QSFP28, and FireFly ports can be used to connect additional data links from the detectors via 100 Gbps low latency links.

MICROCONTROLLER:

a 32-bit MicroBlaze Soft-Core Micro Controller was integrated for debug and configuration purposes. Applications can be deployed onto it either bare metal or by Xilinx Petalinux.

PCIe HOST INTERFACE

STREAM PROCESSING MODULE:

with the outlook of processing primitive streams and thus improving the efficiency of the trigger (e.g. online PID in RICH via HLS4ML Neural Networks)

Conclusions

- New study of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay using NA62 2021–22 dataset:
 - Improved signal yield per SPS spill by 50%.
 - $N_{bg} = 11.0^{+2.1}_{-1.9}$, $N_{obs} = 31$
 - $\mathcal{B}_{21-22}(K^+ \to \pi^+ \nu \overline{\nu}) = (16.0^{+5.0}_{-4.5}) \times 10^{-11} = (16.0 \ (^{+4.8}_{-4.2})_{stat} \ (^{+1.4}_{-1.3})_{syst}) \times 10^{-11}$
- Combining with 2016-18 data for full 2016-22 results:
 - $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$ (using 9+6 categories for BR extraction)
 - $\mathcal{B}_{16-22}(K^+ \to \pi^+ \nu \overline{\nu}) = (13.0^{+3.3}_{-2.9}) \times 10^{-11} = (13.0 \ (^{+3.0}_{-2.7})_{stat} \ (^{+1.3}_{-1.2})_{syst}) \times 10^{-11}$
 - Background-only hypothesis rejected with significance Z>5.
- First observation of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay: BR consistent with SM prediction within 1.7 σ
 - Need full NA62 data-set to clarify SM agreement or tension.

2023-LS3 data-set collection & analysis in progress...

Convolutional model issue -> Kernel replication

NA62

Throughput is not enough to sustain LO rate, but we can <u>replicate the network</u> multiple times, also on multiple devices if necessary.

event

Processing throughput: 7.2 MHz

APEIRON applications: RAIDER (TEXTAROSSA)

INFN

- Dataset for training and validation obtained using the NA62 analysis framework
- Analyser called RingDumperAPE
- Single run or in batch (run list) from CTRL trigger sample
- Output: Histograms + Events dumped on plain text files _
- Different labels are dumped to be used as ground truth
 - 1. Number of rings from RichReco
 - 2. Number of rings from Downstreamtrack
 - 3. Number of electrons from RichReco (based on ring radius only)
 - 4. Number of electrons from Downstreamtrack (based on MostLikelyHypothesis)
 - 5. Number of electrons as 4 + check on the radius + check on Energy over momentum ratio (EOP)
 - Event rejection criteria can be optionally activated
 - Formal check on the reconstructed tracks and rings (e.g. chi2)
 - Event characteristics e.g. NHit, Momentum, etc

RICH Hit list (TDCEvent) RICH trackless reconstruction (TRecoRICHEvent) Downstreamtrack reconstruction (Downstreamtrack) LOTP (TNA62L0Data) Event Labels

> Electron radius = [185,195] mm Eop = [0.90,1.10]

- Batch processing on 2017-2018 data
- Label used is number 5 on slide 24
- Momentum < 35 GeV/c
- Additional requirement is: number of rings from RICH Reco == number of tracks from Downstreamtrack

Total	Even [.]	ts 16396	95								
Total	even	ts of clas	s 0	is	8462	28 (51.63 %)				
Total	even	ts of clas	s 1	is	7682	22 (46.87 %)				
Total	even	ts of clas	s 2	is	243	32 (1.48 %)				
[Total	even	ts of clas	s 3	is	Ĩ	23 (0.01 %)				
Total	even	ts classi1	⁼ied	as 0	is	7553	3 (46.08)	%)			
Total	even [.]	ts classi1	⁼ied	as 1	is	7520	9 (45.89)	%)			
Total	even	ts classi1	⁼ied	as 2	is	1192	0 (7.27 %	5)			
Total	even [.]	ts classi1	⁼ied	as 3	is	124	3 (0.76 %	5)			
Class	0	Efficiency	/ 82.	6 P	urity	92.5	OverContam	ination	7.5	UnderContamination	0.0
Class	1	Efficiency	80.	6 P	urity	82.3	OverContam	ination	0.2	UnderContamination	17.5
Class	2	Efficiency	74.	6 P	urity	15.2	OverContam	ination	0.0	UnderContamination	84.8
Class	3	Efficiency	91.	3 P	urity	1.7	OverContam	ination	0.0	UnderContamination	98.3

NA6Z

LOTP Masks

Mask label	Definition	Downscaling
Not μ	RICH *Q1*!MUV3	200
$\pi u ar{ u}$	$RICH^{*}Q1^{*}!QXUTMC^{*}!MUV3^{*}!LKr(E > 31 > 1cl)$	1
$\mu - ext{exotics}$	$RICH^{*}2^{*}MO2^{*}LKr > 10GeV$	3
$\pi \mu$	$RICH^*QX^*MO1^*LKr > 10GeV$	5
Dielectron	$\mathrm{RICH}^{*}\mathrm{QX}^{*}\mathrm{LKr} > 20\mathrm{GeV}$	8
Multi-Tracks	$\mathrm{RICH}^{*}\mathrm{QX}$	100
$\mu\mu$	$RICH^{*}QX^{*}MO2$	2
μ exotic (!KTAG at L1)	$RICH^{*}Q2^{*}MO1^{*}LKr > 10GeV$	5
ν_{μ}	$RICH^{*}Q1^{*}!Q2^{*}MOQX$	15

Table 2.1. Trigger masks from 2018 run

where ! stands for negation and the specific meaning of each condition is: **RICH**: at least 2 in-time hits in RICH **Q1**: at least 2 in-time CHOD quadrants hits **Q2**: at least 2 in-time opposite CHOD quadrants hits **QX**: at least 2 in-time opposite quadrants hit CHOD **UTMC**: ("upper tight multiplicity cut") less than 5 hits in CHOD **MO1**: 1 outer muon in MUV3 (at least 1 single -or double- PM outer tiles) **MO2**: 2 outer muons in MUV3 (coincidence of 2 single -or double- PM outer tiles) **MOQX**: cross di-muons in MUV3 (coincidence of outer tiles in opposite quadrants) **MUV3**: any MUV3 primitive

Padding 5 bits

Padding 5 bits

Padding 5 bits

32

SOURCE ID	1	COUNTER FORM	AT 🛛	TOTAL NUMBER OF HITS							
SOURCE SUB-	-ID	NUM OF EVENTS		TOTAL MGP LENGTH							
Event data											
Event data											
Event data											
32	24	23	16	15 8		7	0				
- · ·											
EVENT TIMESTAMP											
Reserved		EVENT FINE TIME		EVENT NUMBER OF HITS							
Padding 5 bits	HIT	#0 PM ID (9bits)	H	HIT #1 PM ID (9 bits) HIT #2 PM ID (9 bits)							

16 15

HIT #4 PM ID (9 bits)

HIT #7 PM ID (9 bits)

•••

HIT #3 PM ID (9bits)

HIT #6 PM ID (9bits)

...

24 23

	Source ID	MTP	assembly timestamp high						
MTP header	Source sub-ID	Number of primitives in MTP	Total MTP length						
Timestamp word	0x0000	Pr	rimitive timestamp high						
Primitive data	Primit	ive ID	Timestamp low	Fine time					
Primitive data	Primit	ive ID	Timestamp low Fine time						
Timestamp word	0x0000	Pr	imitive timestamp hi	gh					
Primitive data	Primit	ive ID	Timestamp low Fine time						
Bits	31 24	23 16	15 8	7 0					

									PATT	ERN						
128b word									र	ን						
	STR 3 MGP	3 MGP STR 2 MGP STR 1 MGP STR 0 MGP STR 3 HITS STR 2 HITS STR 1 HITS STR 0 HITS						RESERVED	WINDOW	TOT HITS		TIMES		FT		
	STR 1;	; HIT 1	STR 1;	; HIT O	0 STR 0; HIT 5			STR 0; HIT 4		STR 0; HIT 3		HIT 2	STR 0; HIT 1		STR 0; HIT 0	
	STR 2	; HIT O	STR 1; HIT 8 STR 1; HIT 7			HIT 7	STR 1; HIT 6 ST		STR 1	; HIT 5	STR 1; HIT 4		STR 1; HIT 3		STR 1; HIT 2	
	STR 3;	; HIT 3 STR 3; HIT 2 STR 3; HIT 1			STR 3;	STR 3; HIT 0 STR 2; HIT 4		STR 2; HIT 3		STR 2; HIT 2		STR 2; HIT 1				
	PADDED BITS								STR 3;	HIT 6	STR 3	HIT 5	STR 3;	; HIT 4		
bit range	127120	119112	111104	10396	9588	8780	7972	7164	6356	5548	4740	3932	3124	2316	158	70

HIT #5 PM ID (9 bits)

HIT #8 PM ID (9 bits)

...

0

8 7

Neural Network Sensitivity (or Efficiency)

NA62

https://baltig.infn.it/ape-lab/fpgarich

23/10/2024

git: