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LHCb experiment
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¢ For Run 3 data-taking, LHCb must handle an instantaneous

luminosity x 5 larger than Run 2 ( L. = 2-10*3em™2s71), with a

average pile-up of 5.2 ( < p >=5.2).

« Anew set of tracking detectors have been designed to handle

higher radiation damage and increased track multiplicity, and an

upgraded trigger system has been developed to manage it.

[CERN-LHCC-2014-001; LHCB-TDR-015]



https://cds.cern.ch/record/1647400?ln=en

LHCb trigger system
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e The hardware trigger (LO) reached saturation at high luminosity — Removal of LO in Run 3 and HLT1 operating at 30 MHz.
e HLT1and HLT2 perform Real-Time Analysis (RTA) to reconstruct the event and make trigger decisions based on reconstructed objects.

e To handle the high throughput requirements, HLT1 now runs as a GPU-based application called Allen during data-taking.


https://cds.cern.ch/record/2730181
https://iopscience.iop.org/article/10.1088/1742-6596/878/1/012012

LHCb tracking system

e L HCb has three different tracking detectors to reconstruct the trajectories
Upstream track

of charged particles: T T2 T3
o Vertex Locator (VELO);
o Upstream Tracker (UT); uT

VELO e etk |

o Scintillating Fibres (SciFi) / T stations. 0

e In the LHCb tracking system, reconstructed tracks are classified based on ~ VELO track Downstream track

T track

their hits in tracking detectors:
o Long track: tracks with hits in VELO and SciFi, optionally UT;

o Downstream track: tracks with hits in the UT and SciFi only.
[CERN-LHCb-PUB-2021-005]

e Long tracks and downstream tracks are used in most physics analyses, while the other types either serve as a component of

another track type or are mainly used for detector studies.


https://cds.cern.ch/record/2752971?ln=en

HLT1 Downstream tracking

arXiv:2312.14016v3 [hep-ph] 16 May 2024

LHCb potential to discover long-lived new physics particles with

lifetimes above 100 ps

PACS. INISe/20

1 Introduction and related references), wit o

[Eur. Phys. J. C 84, 608 (2024)]

The main purposes of Downstream tracking is to improve the reconstruction efficiencies of

decays occurring outside the VELO detector:
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Downstream tracking increase the effective decay volume up to 2.5 m — More sensitivity for
Beyond Standard Model (BSM) Long-Lived Particles (LLPs) searches.

Downstream tracking couldn’t be implemented in HLT1 during Run 2 due to limit timing
budgets, but thanks to the trigger system upgrade in Run 3, we successfully developed GPU

version of Downstream tracking:

o This has been running in data-taking since October 2024.


https://link.springer.com/article/10.1140/epjc/s10052-024-12906-3

HLT1 Downstream tracking

HLT1 tracking sequence Forward then Matching sequence
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HLT1 Downstream tracking

[LHCB-TDR-015]
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https://cds.cern.ch/record/1647400?ln=en

HLT1 Downstream tracking

Throughput [LHCB-FIGURE-2024-035]
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e Adding Downstream tracking to HLT1 reduces throughput by approximately 9% to 67.50 kHz per GPU, meeting the HLT1
requirement of over 60 kHz per GPU. 9


https://cds.cern.ch/record/2914404

HLT1 Downstream tracking

Tracking efficiency [LHCB-FIGURE-2023-028]
‘>)\ 1.4 T : l " { l LU I UL I | P 7= | I L I T ] | b3 o B | I LA . I 3\ 1.4 LI ‘l I '. LA I T I UL l | 23 7 e | l L I T I | N BT PR | I LI B I
s MinBias LHCb Simulation g MinBias LHCb Simulation
E 12 g 12

HLT1, noVelo, isDown, fromLambda, P>5GeV, Pt>500MeV HLT1, noVelo, isDown, fromKs0, P>5GeV, Pt>500MeV

|||Illl[ll

|lll|lll|lll

»j{:|lillllll[]]

1 — 1 —:
oslE F ++ + _1_ 08f— g _} |
G TR qLHﬂ"H‘ | & ++++ﬂ+ﬁ% .
06— {- .H- Bl 06— T "} _I_ -l- + -
6 i 6 + _I- ]
0.4 :— + —E 0.4 :— + + _[- +
02— Distribution | 02— Distribution
| | — Efficiency i [ | — Efficiency
E B T e e )] E SRR U e e e L
$560 10000 15000 20000 25000 30000 35000 40000 45000 50000 8500 10000 15000 20000 25000 30000 35000 40000 45000 50000
P (MeV) P (MeV)

e  The HLT1 Downstream tracking shows an average efficiency of about 75% for A° and K.
10


https://cds.cern.ch/record/2875269

HLT1 Downstream tracking

Mass resolution [LHCB-FIGURE-2024-035]
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e  The mass resolution of HLT1 Downstream tracking is approximately 15.3 MeV/c? for K and 3.2 MeV/c2 for A°.
1


https://cds.cern.ch/record/2914404
https://cds.cern.ch/record/2914404

HLT1 Downstream tracking

Armenteros-Podolanski Plot
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https://cds.cern.ch/record/2914404

Summary

LHCb has upgraded its detector and trigger system for Run 3.
Downstream tracking is crucial for reconstructing decays outside the
VELO.

The HLT1 Downstream tracking has been taking data since October
2024.

The downstream tracking achieves ~75% efficiency for A° and K¢, with

mass resolutions of ~3.2 MeV/c? for A° and ~15.3 MeV/c? for K? .

13



Thanks for
listening!

Any questions?
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HLT1 Downstream tracking sequence

SciFi state: 57; — (x,yatas,ty,Q/p)T
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t,‘/Magnot = t]/SciFi Be dty

dy and dty are the special extrapolation corrections
In Y Magnet since its extracted from stereo tilt

dy = Bo+ B1 - Ysciki + B2 - tysaw + B3 -4/ p-

dty = v0+ Y1 - Yscifi T V2 " tysam T 34/ P-

16



HLT1 Downstream tracking sequence
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Downstream vertexing
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Allen: A high level trigger on GPUs for LHCb

GPU Programming abstraction Parallelization mapping

A 4

Slice of events

Thread Block Thread Block Thread Block Thread Block Grld
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Event

Y

Thread Block Thread Block Thread Block Thread Block

aiineinyy T T LAY Thread

e To take advantage of multi-threading in the GPU, we process data in slices of events (1 slice ~ 1000 events). Each thread block is mapped to a single event in the slice, and each

Y

Cluster/Track/Vertex

thread within the block works on an independent candidate for reconstruction or selection (e.g., cluster, track, or vertex).
e Threads within the same block can synchronize and share resources through shared memory.
e An RTX A5000 has 64 Streaming Multiprocessors (SMs), each containing 128 CUDA cores, for a total of 8,192 CUDA cores. If each event uses 128 threads, this means we can process

64 events simultaneously, which should significantly improve the throughput of HLT1. 19



HLT1 Downstream tracking
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A single hidden (32 nodes) layer
Fully Connected Neural Network
(FCNN) is trained to suppress the
fraction of fake tracks.

It utilizes track properties as
input, and output the probability
of a reconstructed track being a
fake track.

The is trained with minimum
bias pp collision simulations,
present great discrimination

power in fake track

Track properties
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% Background hits
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HLT1 Downstream tracking

STATIC STRUCT

It's not necessary to
determine the size of your NN
in the runtime.

namespace DownstreamGhostKiller {

namespace Model {
constexpr unsigned num_node = 14;

constexpr unsigned num_input = 8;

C++/CUDA TRICKS

UNWIND
FOR-LOOP

Use C++ template to explicitly
unroll the for-loop.

:num_node>([&] (int i) {
L:znum_input>([&] (int j) {
1[(i)(3];

h1[i] = ActivateFunction::relu(hl[i] + Model::bias1[i])

USE FAST MATH
FUNCTIONS

Use fast math functions in
CUDA.

namespace ActivateFunction {

// rectified linear unit

__device__ inline float relu(const float x) {
return X > 0 2 x : 0;

}

// sigmoid
__device__ inline float sigmoid(const float x) {
return __fdividef(1.0f, 1.0f + __expf(-x));

K

} // namespace ActivateFunction 21



CUDA Architecture
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