# Reconstruction Framework Advancements for Streaming Readout for the ePIC Experiment at the EIC

Torri Jeske, Nathan Brei (nbrei@jlab.org) CHEP 2024







# ePIC is the primary experiment at the Electron-lon Collider (EIC)

It is a **highly integrated**, **multi-purpose** experiment that is being realized by the **international ePIC collaboration** (formed in 2022-2023) jointly with the EIC Project.

# State of the art detectors and computing

ensure that ePIC will deliver on EIC science from the start of operations

# **Compute-Detector Integration**



Seamless data processing from detector readout to analysis using streaming readout and streaming computing. **Provide rapid turnaround** of 2-3 weeks for data **for physics analyses**, with the timeline driven by alignment and calibrations.

## **Compute-Detector** Integration to **Accelerate Science**



#### **Streaming Readout**

Data is read out in continuous parallel streams that are encoded with information about when and where the data was taken

#### **Artificial Intelligence**

for autonomous alignment and calibration, validation, and rapid processing

#### **Heterogeneous Computing**

for acceleration (CPU, GPU)



# **Streaming Data Processing: Comparison**

# Traditional

- Data acquired in online workflows
- Data is stored as large files in hierarchical storage
- offline workflows process data
- Batch queue-based resource provisioning
- Discrete, coarse-grained processing units (files and datasets)
- Decoupling from real-time data acquisition



# Streaming

- Quasi-continuous flow of fine-grained data
- Dynamic flexibility to match real-time data inflow
- Prompt processing is crucial for data quality and detector integrity
- Processing full data set quickly to minimize time for detector calibration and deliver analysis ready data

# **Advantages of Streaming Data Processing**

# Simplified readout

No custom trigger hardware and firmware

# Holistic detector information

Build events with holistic detector information



# **Continuous data flow**

Detailed knowledge of backgrounds and enhanced control of systematics

# **JANA2**



The ePIC collaboration chose JANA2 as its reconstruction framework. It is a scalable, modern c++ reconstruction framework for both traditional and streaming event processing. It has evolved substantially in response to ePIC's needs.

**Documentation** 

## **JANA2 Concepts**

#### JEvent

Container for data that can be processed as a discrete unit, independently from the rest of the stream.

#### **JEventSources**

Take a file or messaging producer which provides raw event data and exposes it to JANA2 as a stream



#### JFactories

Calculate a specific result on an event-by-event basis. Inputs can come from an event source or may be computed via other JFactories.

#### **JEventProcessors**

Run desired JFactories over teh event stream and write the results to an output file

# **JANA2 New Feature**

# **Event levels**

Timeslices form the basic unit in a streaming system

JANA2 supports different event levels, where each JEvent is tagged as belonging to some JEventLevel

```
enum class JEventLevel {
    Run,
    Subrun,
    Timeslice,
   Block,
    SlowControls,
    PhysicsEvent,
    Subevent,
    Task,
   None
};
```





JANA2 should handle these cases symmetrically to the maximum extent possible.

## **Extracting Physics Events from Timeslices**







## **Extracting Physics Events from Timeslices**







# JANA2 New Feature JEventUnfolder

JEventUnfolder is a special class that defines an algorithm for *unfolding\** 

Inputs come from Timeslice (*parent*) Outputs are PhysicsEvents (*child*)

This replaces the traditional hardware trigger

\*terminology borrowed from functional programming and stream processing





## **Implications for Factories (algorithms)**

#### **Factories are written for a** specific event level

Timeslice-level factories, event-level factories

Event-level factories have access to timeslice-level results







## **Generalizing further..**





#### JANA2 can "wire" the arrows automatically

arrows abstractly form a grid wiring can also be specified manually



# **Basic Topology**





#### **User Provides:**

JEventSource (Timeslice) JEventProcessor JFactory

## **Timeslice Splitting Topology**





#### **User Provides:**

JEventSource (T) JFactory (T) JEventUnfolder (T→ P) JEventProcessor (P) JFactory (P)

# **Timeslice + Subevents Splitting Topology**





#### **User Provides:** JEventSource (T)

JEventProcessor (P)

JEventUnfolder  $(T \rightarrow P)$ JEventUnfolder  $(P \rightarrow S)$ JEventFolder  $(S \rightarrow P)$ 

JFactory (T) JFactory (P) JFactory (S)



# **Implications for ElCrecon**

#### **Define many things once**

Factories, PODIO event sources, and processors can be defined once.

User provides components

Same clustering algorithm on timeslices, physics events, etc



#### **Supports multiple topologies**

#### **Topology generated from** user input

Topology is built based on the components that the user defines

### Summary



#### ePIC detector will use streaming readout

This will provide a simplified readout and holistic detector information with detailed knowledge of backgrounds and enhanced control of systematics

#### **JANA2** was chosen as the reconstruction framework

Actively developed to support features needed for streaming readout

#### Introduced two new component abstractions: Folder and Unfolder

Users can write an algorithm once and configure it at runtime to operate on timeslices or physics events