ML EVENT RECONSTRUCTION TO TEST WITHIN MUonE EXPERIMENT

Miłosz Zdybał on behalf of the MUonE Collaboration

AS SEEN IN

- Zdybał, M., Kucharczyk, M., & Wolter, M. Machine Learning based Event Reconstruction for the MUonE Experiment.
- https://doi.org/10.7494/csci.2024.25.1.5690
- [Computer Science 25(1) (2024) 25-46]

COMPUTER SCIENCE

HOME CURRENT ARCHIVES ABOUT -

HOME / ARCHIVES / VOL. 25 NO.1 / Articles

Machine Learning based Event Reconstruction for the MUonE Experiment

Miłosz Zdybał

PDF

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences

Marcin Kucharczyk

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of

Marcin Wolter

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences

2024-03-10

WHY MACHINE LEARNING?

More complicated detectors, extreme luminosities

More data to be processed

Stricter time constraints

WHY MACHINE LEARNING?

ARTIFICIAL NEURAL NETWORK TRAINING

- Generalize the model, so it can perform a task using data not seen before,
- Supervised training:
 - Uses training dataset (labelled data, ground truth),
 - Responses compared with the labels by the loss function (cost function),
- Unsupervised training:
 - No labelled dataset,
 - Network expected to find patterns in the data,
- Reinforcement training:
 - Agents are scored for their actions,
 - Can be used in situation where there is no mathematical model of the problem.

DEVELOPED TO BE USED IN MUonE

- Looking for signs of the New Physics in determination of the leading hadronic contribution to the muon anomalous magnetic moment a_{μ} ,
- Elastic scattering of muons on the atomic electrons in the target,
- Previous measurements of a_{μ} deviate from Standard Model by 5.2 σ
- Chance to improve the significance to 7σ by lowering the theoretical error coming from the hadronic vacuum polarization $a_{\mu}^{HVP,LO}$.

INITIAL TEST ON FIRST MUonE PROTOTYPE IN 2018

- Simulation based on the 2018 beam test of muon-electron elastic scattering at CERN [JINST 16 (2021) P06005],
- ~132 000 events,
- 2D hits: z + measured value,
- Ground truth:
 - Track parameters:
 - Slope,
 - Intercept,
 - Particle type.

IMPLEMENTED NETWORK

- Multi Layer Perceptron (MLP):
 - PyTorch,
 - Deep neural network: 4 linear layers, 1000 neurons each,
 - Activation function: ReLU,
 - Loss function: MSELoss (Mean Square Error Loss).
- Input: 2D hit coordinates,
- Output: slopes and intercepts of two 3D tracks.

FIRST RESULTS

- Promising, but experiment requires high precision,
- Response from the network may be used as a part of the algorithm.

RECONSTRUCTION ALGORITHM

- RANSAC:
 - RANdom SAmple Consensus,
 - Robust linear fit algorithm insensitive to outliers.

RESULTS

- Track I: muon, Track 2: electron
- Top: ML-based algorithm
- Bottom: "conventional" reconstruction

15

Resolution:

Particle	ML-based	Conventional
Muon	σ = 0.000018 mrad	σ = 0.000019 mrad
Electron	σ_1 = 1.290 mrad, σ_2 = 0.245 mrad	σ_1 = 1.230 mrad, σ_2 = 0.244 mrad

ML STUDIES FOR CURRENT MUonE LAYOUT

- Will operate at a high energy muon beam at CERN SPS,
- Beryllium or carbon target,
- Pair of outgoing muon and electron will pass through the set of tracking stations with silicon strip sensors,
- Measured coordinates:
 - x or y (alternatively) in the plane perpendicular to the beam axis,
 - *u* or *v* (stereo layers) like *x* and *y*, but rotated $\pm 45^{\circ}$.
- 40 stations followed by the calorimeter and muon chamber.

CURRENT/FUTURE WORKS

- Graph neural networks (GNN):
 - Growing popularity in HEP,
 - Events represented as graphs:
 - Nodes hits,
 - Edges track segment candidates, connections,
 - Flexible at handling missing or additional hits (noise, background).

MACHINE LEARNING TASKS

- Track reconstruction:
 - Graph edges representing track segment candidates,
 - Edge classification,
- Particle identification, event classification:
 - Graph nodes representing hits, graphs representing events,
 - Node classification,
 - Graph classification,
- Software alignment.

18

CONCLUSIONS

- Machine learning potential for HEP:
 - Good at finding patterns in big datasets,
 - Fast response (no iterations),
 - Highly parallel,
- Practical application:
 - ML-based track reconstruction for a dataset representing a prototype MUonE test,
 - Results on par with the classical method,
- Potential to use also for different tasks for current MUonE layout.

BACKUP

SUPERVISED LEARNING

- Labelled dataset:
 - Expected output value assigned to each input,
 - Used for training and testing,
- Loss function:
 - Grades every response from the network,
 - Results used to optimize the model,
- Optimization:
 - Backpropagation algorithm.

22

Hey @Google, exactly what kind of Al am I helping you guys train with this?

BACKPROPAGATION AND OPTIMIZATION

- Backpropagation for feedforward neural networks:
 - Estimation of the gradient of the loss function with respect to the weights,
 - Term often used to refer to the learning algorithm,
- Optimizer:
 - Utilizes calculated gradient (e.g. stochastic gradient descent),
 - Adjusts values of the weights to minimize the value of the loss function.