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WHY MACHINE LEARNING?

More complicated detectors, extreme
luminosities

More data to be processed

Stricter time constraints



?
WHY MACHINE LEARNING!?

Cons Pros

Highly paralle|
“ ” Accelerated with
Black box GPUs and NPUs
Requires Mc. One-step
data agreement response




ARTIFICIAL NEURAL NETWORK
TRAINING

Generalize the model, so it can perform a task using data not seen before,

Supervised training:

Uses training dataset (labelled data, ground truth),

Responses compared with the labels by the loss function (cost function),

Unsupervised training:
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Reinforcement training:

Agents are scored for their actions,

Can be used in situation where there is no mathematical model of the problem.




DEVELOPED TO BE USED IN MUonE §Ne

Looking for signs of the New Physics in determination of the leading hadronic
contribution to the muon anomalous magnetic moment a,, ,

Elastic scattering of muons on the atomic electrons in the target,
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INITIAL TEST ON FIRST MUonE

PROTOTYPE IN 2018

Simulation based on the 2018 beam test of muon-electron
elastic scattering at CERN [JINST 16 (2021) P0O6005],

~132 000 events,

2D hits: z + measured value,
Ground truth:
Track parameters:
Slope,
Intercept,

Particle type.
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IMPLEMENTED NETWORK

Multi Layer Perceptron (MLP):
PyTorch,
Deep neural network: 4 linear layers, 000 neurons each,
Activation function: ReLU,
Loss function: MSELoss (Mean Square Error Loss).

Input: 2D hit coordinates,

Output: slopes and intercepts of two 3D tracks.




FIRST RESULTS

Promising, but experiment requires high precision,

Response from the network may be used as a part of the algorithm.
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM
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* Robust linear fit algorithm insensitive to outliers.



RECONSTRUCTION ALGORITHM
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RESULTS

Track |: muon,Track 2: electron
Top: ML-based algorithm

Bottom: “conventional” reconstruction

Resolution:

Muon o = 0.000018 mrad o = 0.000019 mrad
Electron 0, = 1.290 mrad, 0, = 1.230 mrad,
0, = 0.245 mrad 0, = 0.244 mrad
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ML STUDIES FOR CURRENT MUonE
LAYOUT

Will operate at a high energy muon beam at CERN SPS, Tarﬁftk I Ta'gj‘ it
, [ 1
Beryllium or carbon target, ot 2semer -
e ————— 11
Pair of outgoing muon and electron will pass through " -
the set of tracking stations with silicon strip sensors, fayer3 layer o2 L

Measured coordinates:

x or y (alternatively) in the plane perpendicular to the beam axis,

u or v (stereo layers) — like x and y, but rotated +45°.

40 stations followed by the calorimeter and muon chamber.




CURRENT/FUTURE WORKS

Graph neural networks (GNN):
Growing popularity in HEP,
Events represented as graphs:
Nodes — hits,
Edges — track segment candidates, connections,

Flexible at handling missing or additional hits (noise, background).




MACHINE LEARNING TASKS

Track reconstruction:
Graph edges representing track segment candidates,
Edge classification,
Particle identification, event classification:
Graph nodes representing hits, graphs representing events,
Node classification,
Graph classification,

Software alignment.




CONCLUSIONS

Machine learning potential for HEP:
Good at finding patterns in big datasets,
Fast response (no iterations),

Highly parallel,

Practical application:

ML-based track reconstruction for a dataset representing a prototype
MUonE test,

Results on par with the classical method,

Potential to use also for different tasks for current MUonE layout.



Q&A




BACKUP




SUPERVISED LEARNING

* Labelled dataset:
* Expected output value assigned to each input,
* Used for training and testing,
* Loss function:
* Grades every response from the network,
* Results used to optimize the model,
* Optimization:

* Backpropagation algorithm.
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BACKPROPAGATION AND OPTIMIZATION

Backpropagation for feedforward neural networks:
Estimation of the gradient of the loss function with respect to the weights,
Term often used to refer to the learning algorithm,

Optimizer:
Utilizes calculated gradient (e.g. stochastic gradient descent),

Adjusts values of the weights to minimize the value of the loss function.
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