Real-time pattern recognition with FPGA at LHCb, an O(n) complexity architecture

Federico Lazzari on behalf of the LHCb collaboration

27th International Conference on Computing in High-Energy and Nuclear Physics CHEP2024 – October 19-25

The challenge

- Progress of experiment goes together with increasing data processing rate.
- Flavor physics at low P_T is more demanding: LHCb have a higher data rate than other LHC experiment even if smaller and with lower lumi.
- In Run 5 (2035) luminosity will be increased by a factor up to 7.5 [LHCB-TDR-026].
- Reconstruction complexity is typically $O(n^2)$ \rightarrow 50x computational power.
- Renew reconstruction paradigm is mandatory.

The LHCb reconstruction model

- Flavour physic has very-high cross section respect to Higgs and EW: $\sigma_{b} \sim 10^{4} \sigma_{Z}$ and $\sigma_{b} \sim 10^{7} \sigma_{H} \rightarrow No \ L0 \ trigger \ on \ simple \ quantities (e.g. <math>P_{T}$, E_{T} , muons) [<u>LHCB-TDR-016</u>, <u>Alessandro talk Mon Track2</u>].
- Reconstructs of every event, at the LHC average rate (~30 MHz):
 - HLT1 (GPU): partial reconstruction.
 - HLT2 (CPU): full detector reconstruction and final selection.
- Alignment computed between HLT1 and HL2 (buffer).
 - Provides offline quality to HLT2.
- To cope with higher luminosities we need to accelerate HLT.

Toward primitive-based reconstruction

- Reconstruct intermediate data (primitives) using "local" information.
- Embed primitives (e.g. clusters, track segments) in raw data.
 - Off-loads HLT from processing tasks.
 - Allows to reduce data flow at the source (e.g. dropping hits not part of tracks).
- Not trivial:
 - Must process all the events (30 MHz).
 - \circ Constrained latency \rightarrow can't rely on time-multiplexing.
- This paradigm works only if the pre-processing has a complexity $< O(n^2)$.

Toward primitive-based reconstruction

- Reconstruct intermediate data (primitives) using "local" information.
- Embed primitives (e.g. clusters, track segments) in raw data.
 - Off-loads HLT from processing tasks.
 - Allows to reduce data flow at the source (e.g. dropping hits not part of tracks).
- Not trivial:
 - Must process all the events (30 MHz).
 - \circ Constrained latency \rightarrow can't rely on time-multiplexing.
- This paradigm works only if the pre-processing has a complexity $< O(n^2)$.

The "Artificial Retina" architecture allows us to do this.

• Highly-parallel architecture for pattern recognition.

• Highly-parallel architecture for pattern recognition.

- Track parameter space represented in a matrix of processing units (cells).
 - Each cell specialised to reconstruct tracks neighbour to a reference track.

[LHCb-PUB-2024-001]

• Highly-parallel architecture for pattern recognition.

• Track parameter space represented in a matrix of processing units (cells).

- Each cell specialised to reconstruct tracks neighbour to a reference track.
- Each cell computes its response (*R*) as the weighted sum of hits.

• Highly-parallel architecture for pattern recognition.

Step 3: Find the local maxima and compute centroid [LHCb-PUB-2024-001]

- Track parameter space represented in a matrix of processing units (cells).
 - Each cell specialised to reconstruct tracks neighbour to a reference track.
- Each cell computes its response (*R*) as the weighted sum of hits.
- Local maxima in the matrix of cells response correspond to reconstructed tracks.

Unique features

- 1) Specifically conceived for FPGAs:
- Programmable logic resources.
 - Each component has its dedicated resources.
 - \rightarrow Everything works in parallel.
 - $\rightarrow~$ No need to access shared memory.
- Programmable data paths.
 - FPGAs can fan out signals and sustain very-high bandwidth.
 - \rightarrow Each Hit is distributed to the cells in parallel.
- Numerous high-bandwidth transceivers (XCVRs).
 - Can overcome size limitation exchanging data between FPGAs.
 - \rightarrow Cells are spread over several chips.

The "artificial retina" complexity

Step 1:

- Configuration stage: happens before data taking.
 - \rightarrow No processing time consumed.

Step 2:

- Cells work in parallel.
 - \rightarrow Processing time do not depend on the number of cells.
- Each cell can process few hits per clock cycle.
 - \rightarrow Processing time **scales linearly** with the number of hits.

Step 3:

- Cells check if they represent local maxima in parallel.
 - \rightarrow Processing time do not depend on the number of cells and tracks.

Can we prove this?

Hardware demonstrator

- A complete Retina demonstrator was installed and tested at the LHCb TestBed facility (Point 8) [10.1051/epjconf/202429502009].
- Implemented on 8 PCIe-hosted FPGA cards.
- Reconstructs a quadrant of the LHCb Vertex Locator (VELO).
 - \circ $\,$ $\,$ Scalable to the whole detector by adding more FPGA cards.
- Working on:
 - LHCb live data.
 - LHCb MC data:
 - Nominal luminosity $(2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1})$.
 - Longest continuous run: 27 days (no error detected).
 - Event rate: 19.6 MHz.
 - Power consumption: 550 W.

Throughput scaling

• We can emulate higher luminosities condition merging events at lower luminosity.

- Performance scales linearly up to very high luminosities.
- How can we run at high luminosities keeping the required event rate (30 MHz)?

The "artificial retina" complexity

Processing time **can** depend on the number of cells:

- Hits distant from the mapped track have a null weight.
 - \rightarrow These hits can be delivered only to certain cells.
- The "artificial retina" architecture includes by default a custom switch to do that.
 - Hits from specific regions of the detector are routed only to a subset of cells.
 - \rightarrow Each cell processes only hits **near the reference track**.
- We can increase cell density of the parameter space.
 - \rightarrow More cells (more reference tracks)
 - \rightarrow each cell covers less parameter space
 - $\rightarrow~$ less hits processed by a cell
 - \rightarrow higher speed

Throughput scaling

• We can emulate a bigger system by increasing the cell density of the demonstrator.

- Performance **scales linearly** with the system size.
 - \rightarrow We can maintain the system throughput at high luminosity.
- What can we do to improve the LHCb event reconstruction?

Tracking at LHCb [Jiahui talk Tue Track 2]

- Velo tracks: hits on the VELO.
- T tracks: hits on the SciFi.
- Long tracks: hits on at VELO-(UT)-SciFi.
 - The most used in analysis.
- Downstream tracks: hits on UT and SciFi.
 - Most interesting for studying: Neutral kaons and lambdas ($D^0 \rightarrow K_S K_S, K_S \rightarrow \mu \mu$, etc.), Lifetime-unbiased $D^0 \rightarrow K_S \pi \pi$, Exotics LLPs.

Tracking at LHCb [Jiahui talk Tue Track 2]

- Velo tracks: hits on the VELO.
- T tracks: hits on the SciFi.
- Long tracks: hits on at VELO-(UT)-SciFi.
 - \circ The most used in analysis.
- Downstream tracks: hits on UT and SciFi.
 - Most interesting for studying: Neutral kaons and lambdas ($D^0 \rightarrow K_S K_S, K_S \rightarrow \mu \mu$, etc.). Lifetime-unbiased $D^0 \rightarrow K_S \pi \pi$, Exotics LLPs.
- Downstream tracks are reconstructed starting from T tracks.
- Long tracks can be reconstructed starting from T tracks.

17

The matching sequence

- Long tracks by matching VELO tracks and T tracks.
- One of the possible HLT1 reconstruction sequence at LHCb.
- Execution time:
 - ο Total: **7.2 μs**
 - Seeding: **1.5 µs**

The matching sequence

- Long tracks by matching VELO tracks and T tracks.
- One of the possible HLT1 reconstruction sequence at LHCb.
- Execution time:
 - ο Total: **7.2 μs**
 - \circ Seeding: **1.5 µs**
- What if T tracks primitives were available?
 - Replace seeding with primitive decoding and refitting.

366.00 kHz

2227.94 kHz

139.52 kHz

- Execution time:
 - ο Total: **5.4 μs**
 - New algorithms: **0.06 µs**
- New algorithms add a small overhead.
- Saved more time than replaced: $(7.2 5.4) \ \mu s = 1.8 \ \mu s > 1.5 \ \mu s.$

The Downstream Tracker

- LHCb plans to build a device (DWT) for reconstructing T track primitives using the "artificial retina" architecture [LHCB-TDR-025].
- Available also a detailed public note [LHCb-PUB-2024-001].
- Requires ~100 FPGAs boards (new LHCb readout boards).
- DWT will take data in Run 4.

Summary

- In the future HEP experiment have to process more data and more complex.
- Pre-process data near the detector allows to save processing power and network resources.
- The "artificial retina" is a highly-parallel architecture for pattern recognition.
- Its complexity is intrinsically O(n).
 - \rightarrow Particularly interesting for LHCb Run 5.
- LHCb planned to build for Run 4 a device for reconstructing T track primitives using this architecture.
- If included in default sequence, HLT1 throughput increased by 33% (matching sequence).
- Experience gained with this new technology will be precious in studying possible applications to the challenging environment of LHCb-U2.

Backup

Introduction

What are primitives?

- **Primitives** is not something new at LHCb.
 - Object produced from raw data, required to produce higher level object.

E.g. Active channels \rightarrow SciFi hits (clusters) \rightarrow tracks SciFi hits \rightarrow T-tracks \rightarrow Long/Downstream tracks

- Evaluated during readout and included in raw event.
 - Can be used to accelerate both HLT1 and HLT2.
 - \circ Possibility to also drop some raw data \rightarrow reduce B/W needs.
- We are talking about producing more complex *primitives* bringing forward the first stage of tracking.
 - \circ E.g. Clusters \rightarrow sets of aligned hits \rightarrow tracks
- HLT completes the reconstruction starting from pre-processed data.
 - *Primitives* can still be refined to increase quality.
 - Load balance between the two systems can be optimized according to needs, exploiting the strengths of each architecture.

Benefits of embedded primitives

- Hits in the VELO detector of LHCb appear as 2D clusters of pixels.
- In Run 3, firmware deployed in FPGA to make clusters on the fly [10.1109/TNS.2023.3273600].
- Uses spare resources in DAQ boards \rightarrow No extra hardware.
- Raw pixel information dropped and replaced by hit positions during readout \rightarrow saves 14% of b/w
- FPGA implementation saves 11% of HLT1 computing power.
- Uses 1/50th of the electrical power required by HLT1 for the same task (130 W vs 6 kW).

The "artificial retina"

Physical implementation

Physical implementation

- FPGA mounted on external boxes connected to SciFi EB nodes.
- In a future scenario could be implemented inside readout boards.

PClexpress bus

Input (raw data) Output

(primitives)

Integration in DAQ system

- The "Artificial Retina" could find a place in the Event Builder nodes using PCIe boards.
- The Event Builder collects the tracks and performs the building, treating the "Artificial Retina" like a virtual sub-detector.

The Distribution Network

- Hits are provided to different Tracking boards arranged by sub-detector DAQ board.
- A custom distribution network rearranges the hits by track parameters coordinates (similar to a "change of reference system").
- Using Lookup Tables (LUTs), the Distribution Network delivers to each cell only hits close to the parametrized track, enabling large system throughput.
- The Distribution Network is a single entity transversal to all the Tracking boards.
- We designed a modular Distribution Network spread over the same array of FPGAs performing the tracking.

Switch

- 2-way dispatcher (2d): 2 splitters (1 input 2 outputs) and 2 mergers (2 inputs 1 output).
- Combining 2-way dispatchers is possible to build a switch with the desired number of lanes:
 - Switch with $N = 2^n$ lanes requires M 2-way dispatchers: $\begin{cases} M(0) = 0 \\ M(n) = 2M(n-1) + 2^{n-1} \end{cases}$ Ο
- We can implement any 2^n lanes switch changing a single parameter.

Optical communication

- Uses Intel SuperLite II v4 communication protocol.
 - Fully free and available in source code.
 - Supports flow control.
 - Can be used to connect various FPGA families (already available on A10, S10, Agilex).
- Design adapted to implement the desired number of independent links.
- Extensively tested:
 - Long run: up to 2 months.
 - \circ High-speed: up to 26 Gbps.
 - Multiple boards: up to 5 boards.
 - Large patch-panel: up to 64 links.

Engines

- Accepts 1D- and 2D-hits.
- Multiple inputs $(N_{in} = 4)$ for accepting up to 4 hits per clock cycle.

The firmware paradigms

Pipeline:

- Like an assembly line, an event is processed as soon as possible, State without waiting for the previous one to go through all the steps.
- This paradigm is extended to the hit level \rightarrow 1 hit/clk cycle.

Parallel computing:

- Hits flow through the distribution network via parallel lines.
- Cells work in a fully parallel way (both weight accumulation and maxima finding).
- Cells have also parallel inputs to process more hit per clock cycle.
- A bigger system has more parallel processor, so its throughput is similar to the one of a small system.

Modularity:

- Each component (switch, matrix of cell, ecc.) is a repetition of basic blocks.
- A bigger system is implemented instantiating more copies of the same modules.
- Modules can be freely spread over multiple devices overcoming FPGA size limitation.

This is different from other systems that rely to time multiplexing.

		Ti	me	fran	ne					
	0	1	2	3	4	5	6			0
Stage 1	E0			E1					Stage 1	E
Stage 2		E0			E1				Stage 2	
Stage 3			E0			E1			Stage 3	
Result				E0			E1		Result	
	La	tenc	×y	Tro	bugł	nput				Ľ
3 time frame 1 evt / 3 time frame					,		3			

	Time frame						
	0	1	2	3	4	5	
Stage 1	E0	E1	E2				
Stage 2		E0	E1	E2			
Stage 3			E0	E1	E2		
Result				E0	E1	E2	
	Latency			Tro	bugł	nput	
	3 tii	me fra	ame	1 e	vt./tim	ne fra	me

The Downstream Tracker

The importance of Downstream tracks

- Long tracks: hits at least on VELO and SciFi.
 - Flight distance < 1 m
 - Few LLPs reconstructible as Long tracks.
- Downstream tracks: hits on UT and SciFi.
 - Reconstructed from **T-tracks** adding UT hits.
- Triggering on Downstream tracks at HLT1 level extends the LHCb baseline physics program in interesting ways:
 - Neutral kaons and lambdas ($D^0 \rightarrow K_S K_S, K_S \rightarrow \mu \mu$, etc.).
 - Lifetime-unbiased trigger for $D^0 \rightarrow K_s \pi \pi$.
 - Exotics LLPs.
- Important to preserve them also at higher luminosities.

Decay Mode	D/L yield in data	
$B^0 \to J/\psi K_{\rm S}^0$	2.5	
$\Lambda_b^0 \to J/\psi \Lambda$	2.9	37

Simulation study of DWT

- Studies performed with realistic DWT Emulator. ≈ 0.1
- LHCb MC productions for Run 3.
- Reconstruction steps:
 - Axial pattern recognition (Retina).
 - \circ Ghost removal (χ^2 fit).
 - Stereo pattern recognition (Retina).
 - \circ Ghost removal (χ^2 fit).
- SciFi reconstruction.
 - Axial part (x-z view): 64 FPGAs.
 - Stereo part (y-z view): 32 FPGAs.
- Track parameters:
 - *x*-coordinate on first and last layer.
 - y-coordinate at the middle of SciFi.
 - Extra: *x*-*z* curvature from fit.

DWT tracking performance

• Fiducial requirements: $p_{T} > 200 \text{ MeV/c}; 2 < \eta < 5.$

Event-averaged values in brackets

Track type	MinBias	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$B_s^0 \to \phi \phi$
Long, $p > 3 \text{GeV}/c$	85(86)	83(84)	84 (85)
Long, $p > 5 \text{GeV}/c$	90(91)	89 (90)	89(89)
Long from B not e^{\pm} , $p > 3 \text{GeV}/c$	-	-	88 (87)
Long from B not e^{\pm} , $p > 5 \text{GeV}/c$	-	-	90 (90)
Down, $p > 3 \text{GeV}/c$	84 (85)	$83 \ (84)$	83 (84)
Down, $p > 5 \text{GeV}/c$	89(91)	88 (89)	88 (89)
Down from strange not e^{\pm} , $p > 3 \text{GeV}/c$	-	83 (83)	-
Down from strange not e^{\pm} , $p > 5 \text{GeV}/c$	-	88 (88)	-
Down from strange not long not e^{\pm} , $p > 3 \text{GeV}/c$	-	$83\ (83)$	-
Down from strange not long not e^{\pm} , $p > 5 \text{GeV}/c$	-	$88 \ (89)$	-
ghost rate	16(10)	17(12)	17(13)
ghost rate / $(1 - \text{ghost rate})$	$0.2 \ (0.1)$	$0.2 \ (0.1)$	$0.2 \ (0.1)$

• Performance similar to current HLT1 already at the primitive level.

HLT1 Throughput

366.00 kHz	Seeding (without RetinaDWT)					
675.39 kHz	Seeding (with RetinaDWT Axial)					
2227.94 kHz	Seeding (with RetinaDWT Axial + Stereo)					
247.51 kHz	Velo-SciFi Matching (without RetinaDWT)					
364.09 kHz	Velo-SciFi Matching (with RetinaDWT Axial)					
591.95 kHz	Velo-SciFi Matching (with RetinaDWT Axial + Stereo)					
139.52 kHz	hlt1_pp_matching (without RetinaDWT)					
171.17 kHz	hlt1_pp_matching (with RetinaDWT Axial)					
186.16 kHz	hlt1_pp_matching (with RetinaDWT Axial + Stereo) LHCb Simulation upgrade_DC19_01_MinBiasMD_retinacluster.mdf					
0	200 400 600 800 2200					
Throughput in RTX A5000 (kHz)						