SYCL-based online data processing framework concept for PANDA

CHEP 2024 | 23.10.2024

Bartosz Soból

Outline

- PANDA experiment
- PandaR2 framework concept
- Development and roadmap

PANDA experiment

- One of major experiments at FAIR
- DAQ system with software trigger
- Up to 300 GB/s raw data in final setup
 - From multiple subsystems
 - \circ To be processed online
 - with diverse algorithms

Existing PANDA software

- PandaRoot framework for offline simulation and analysis
 - Not applicable for online execution
- Based on FairRoot
 - Also a foundation of simulation stacks in CBM, ALICE and more

PandaR2 - the concept

- Online data processing framework concept
 - New codebase (modern CMake, C++20)
 - No ROOT dependency in *compute* part
- Designed around SYCL
 - For parallel CPU and GPU compute
- FairMQ used for messaging
- Middleware between PandaRoot and PandaR2
 - R2 tasks (algorithms) available from PandaRoot
- Connection to the ROOT world
 - Dictionaries for data classes (Digi, Hit, Track, etc.)
 - ROOT file I/O

What is SYCL?

- Open standard, higher-level heterogeneous programming model CPU, GPU, FPGA, ...
- Based on standard C++17 without language extensions
 - Tools for C++ work with SYCL (IDEs, static analysis, linters, formatters, ...)
- Single source for host and kernel/device code
 - \circ Kernel == any callable (function, lambda, function object)*
 - C++ functions called by kernel are also compiled as a part of device code
 - Implicit device-host separation
- Implicit memory management and task scheduling
- Living ecosystem
 - Evolving standard, growing community, open-source and stable compilers

PandaR2 and SYCL

- Supports AdaptiveCpp (default) and Intel DPC++ compilers
- Wide range of supported platforms
- Possibility to fall-back from accelerator execution to CPU
 - Easier development
 - Easy to test CPU vs GPU performance
- Can also incorporate other programming models (OpenMP)

FairMQ

- Message Queuing Library and Framework
 - Developed at GSI/FAIR
- Large-scale data movement in distributed environments
- Abstract transport layer
- Provides tools, utilities and primitives
 - Ability to build a complete pipeline of connected processes (devices)
- Well tested on the large scale in ALICE

Simple setup

- Two nodes connected with Ethernet network
- Feeder FairMQ device on Node 1
 - Reads data from simulations file and sends serialized data
- Worker + Sink devices on Node 2
 - Receive data, run processing and dump output

Advanced setups

Ultimate Goal

Development summary

Completed

- Framework foundations, basic abstractions
- Integration with SYCL and FairMQ
- Basic PandaRoot-R2 integration
- Two tracking algorithms implemented

Ongoing

- Implementing more elements of reconstruction pipeline
- Constructing complex FairMQ topologies with deployment

Future

- Infrastructure (parameters repository, monitoring)
- DAQ output simulation
- Testing in experimental test setup
- ..