
GPU Acceleration and EDM
Developments for the ATLAS 3D

Calorimeter Clustering in the
Software Trigger

CHEP 2024

Nuno dos Santos Fernandes on behalf of the ATLAS Collaboration

Context

• A Toroidal LHC Apparatus[1]

• One of the two general-purpose detectors at the LHC

• Three layers:

 Inner Detector

 Calorimeters

 Muon Spectrometers

• 108 electronic channels

Nuno dos Santos Fernandes 3GPU Acceleration of ATLAS Calorimeter Clustering

The ATLAS Experiment

 187652 calorimeter cells with multiple
gain paths to optimize resolution
versus dynamic range of operation

[1] – The ATLAS Experiment at the CERN Large Hadron Collider, DOI 10.1088/1748-0221/3/08/S08003

Source: João Pequenão, CERN

https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/1095924

• The ATLAS Trigger[1] is used to filter the detected events to ensure
a manageable output rate
 Speed versus accuracy trade-offs can be relevant

• Two stages:
 Hardware-based (Level 1/Level 0)
 Software-based (High-Level Trigger/Event Filter)

• The High-Luminosity LHC Upgrade will increase the luminosity,
making event reconstruction more computationally demanding

• The Phase II upgrade needed for the High-Luminosity LHC
increases event rate at the software-based stage by a factor of 10

• This higher computational load requires more computing power
available for the trigger and/or better optimization

• Alternative: hardware acceleration
 Ongoing studies for both FPGA and GPU acceleration

Nuno dos Santos Fernandes 4GPU Acceleration of ATLAS Calorimeter Clustering

The ATLAS Trigger

[1] – The ATLAS trigger system for LHC Run 3 and trigger performance in 2022,
DOI 10.1088/1748-0221/19/06/P06029 Diagram of the ATLAS Trigger System

40 MHz

ATLAS
Dectector

Storage

High
Level

Trigger

Event
Filter

~1 kHz 10 kHz

“ Computer
Farm ”

Level 1 Level 0

100 kHz

Phase I
(Present)

Phase II
(HL-LHC)

1 MHz
(full event
building)

Custom
Hardware

https://doi.org/10.1088/1748-0221/19/06/P06029

• Showers deposit their energy in a finite region of space:
a calorimeter cell

• Calorimeter cells organized in up to 28 sampling layers/regions

• Two main sources of noise: electronic read-out and pile-up

• The noise estimate is typically a function of the gain of the cell

• For the Tile calorimeter, the electronic noise can be estimated
by a two-Gaussian model, which involves more sophisticated
computations (inverse error function of error functions)

• Reconstruction of showers generated by outgoing particles in the calorimeters of the ATLAS experiment

Calorimeter Reconstruction Algorithms

Nuno dos Santos Fernandes 5GPU Acceleration of ATLAS Calorimeter Clustering

Source: ATLAS TileCal Public Plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TileCaloPublicResults

Topological and Topo-Automaton
Clustering

Topological Clustering

Nuno dos Santos Fernandes 7GPU Acceleration of ATLAS Calorimeter Clustering

• Topological Clustering is the currently used approach for calorimeter reconstruction in ATLAS
• Main criterion for assigning cells to the clusters is the signal-to-noise ratio (SNR) of the energy deposition

 This is essentially the relevance of the contribution of each cell to the reconstruction of the underlying physics
• Clustering typically groups up several tens of cells, some clusters may be significantly larger
• Several hundred to a few thousand clusters per event, depending on the physical process
• Significant dependence on the number of collisions per bunch crossing (μ) in terms of the execution time

Source:The ATLAS trigger system for LHC Run 3 and trigger performance in 2022, DOI 10.1088/1748-0221/19/06/P06029

https://doi.org/10.1088/1748-0221/19/06/P06029

• Two main algorithmic stages:
 Cluster growing: iteratively assign cells to clusters based on the SNR

 Classify cells as seed, growing or terminal

 Clusters grow out from the seeds to their neighbouring cells in an order defined by the SNR of the seed

 Clusters are merged if they touch through growing cells

Topological Clustering

Nuno dos Santos Fernandes 8GPU Acceleration of ATLAS Calorimeter Clustering

• Two main algorithmic stages:
 Cluster splitting: split the clusters around local maxima of the energy to distinguish different objects travelling

in the same direction

 Identify local maxima

 Exclude maxima from certain regions of the detector that overlap in certain directions to favour layers
with greater radiation depth

 Start growing the clusters to neighbouring cells in an order defined by the energy of the cells

 Cells that can belong to more than one maximum are shared

 Shared cells grow clusters only in the end and are weighted based on the energy and distance to the
centroid: 𝑤1 =

𝐸1

𝐸1+ 𝑟 𝐸2
, 𝑤2 = 1 − 𝑤1, with 𝑟 = 𝑒𝑑1−𝑑2

Topological Clustering

Nuno dos Santos Fernandes 9GPU Acceleration of ATLAS Calorimeter Clustering

Topological Clustering

Nuno dos Santos Fernandes 10GPU Acceleration of ATLAS Calorimeter Clustering

• A final step involves calculating several cluster
moments, based on weighted sums of the properties of
the cells and functions thereof
 Some of the moments require calculating

eigenvalues and eigenvectors of a 3 × 3 matrix

• Some local calibrations may be applied to the clusters,
based on the cluster moments and the constituent cells

• Topological Clustering is the most computationally
demanding algorithm of the calorimeter reconstruction
and among the top 20th most computationally
demanding algorithms within the ATLAS trigger
 The same implementation is used for both online

and offline reconstruction (with potentially
different configuration)

• Topological clustering, as described, is not accelerator-
friendly: a different algorithmic approach is needed

Limitations of Topological Clustering

Nuno dos Santos Fernandes 11GPU Acceleration of ATLAS Calorimeter Clustering

• The clusters are expressed as lists of cells1 which must be resized as they grow

• The algorithm itself involves keeping track of multiple lists of cells1, especially for cluster splitting

• Resizing a container is difficult to do in parallel, and it goes against the memory model of both GPUs and FPGAs

• For a more parallel-friendly implementation, we can instead mark the cells that belong to each cluster with a “tag”

 By constructing these tags appropriately, the sorting steps can be skipped entirely: floating point numbers
that follow the IEEE-754 standard can be put in a “total ordering” where the bit patterns, interpreted as
integers, are ordered in the same way as the original floating point numbers

 By defining a set of rules for how these tags are propagated from a cell to its neighbours, one can replicate the
entire behaviour of the iterative parts of cluster growing and cluster splitting while only considering each pair
of neighbours independently from each other (potentially in parallel, as long as tag updates are thread-safe)

• Since we have both a state for each cell and can specify the rules for how that state changes based on the
neighbourhood, this is equivalent to a cellular automaton, hence Topo-Automaton Clustering

1 – “List” is used here in the sense of an ordered collection of items; specifically, they correspond to dynamically allocated arrays, or “vectors” in C++.

Topo-Automaton Clustering

Nuno dos Santos Fernandes 12GPU Acceleration of ATLAS Calorimeter Clustering

• Cluster tags are 64-bit integers with specific structure:

• The tags are propagated through pairs of neighbouring cells satisfying the conditions for clusters to expand

 We handle each pair of cells in parallel, using appropriate atomic operations when needed

• Additional logic (e. g. keeping a cell to cluster index table) reduces the number of iterations

• All necessary temporary information stored in the same block of memory meant to hold the cluster moments
(calculated only at the end), everything can be pre-allocated

 Total per event memory footprint is ~80 MB (per CPU thread)

 Cell geometry, neighbourhood relations and noise constants represent ~100 MB of constant information

Cluster growing tag structure Cluster splitting tag structure

Topo-Automaton Clustering

• Growing, splitting and moments calculation fully
implemented in the GPU using CUDA

• 100% agreement in cell assignment can be achieved
between CPU and GPU with appropriate options
(e. g. not using the two-Gaussian noise model)
 Differences without these options are also fully

understood (due to indeterminacies in the CPU
and floating point accuracy issues, mostly)

• Basic cluster properties (e. g.: energy, η, φ) yield
similar values (within floating point accuracy)

• Some cluster moments have greater differences due
to accumulated and compounded floating point
errors (there are calculated values that depend on
calculated values that depend on calculated values…)

• The data structures used in the CPU part of the code
cannot be used directly in the GPU, so we need to
convert between the two representations

Nuno dos Santos Fernandes 13GPU Acceleration of ATLAS Calorimeter Clustering

Comparison of the Cluster Properties

Nuno dos Santos Fernandes 14GPU Acceleration of ATLAS Calorimeter Clustering

Results show an excellent agreement between CPU and GPU, with only floating point accuracy issues caused by
the different order of operations due to the inherently unpredictable timing of the parallel execution on a GPU.

Relative error in the calculated transverse energy of
the clusters as a function of the CPU reference value

Comparison of the calculated pseudo-rapidity (η) of
the clusters in the CPU and GPU implementations

Source: ATLAS HLTCalo Public Plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTCaloPublicResults#EF_Calo_Algorithms

We currently achieve a speed-up of ~5.9 for di-jets, ~8.9 for tt, considering all data conversions and transfers.
The speed-up depends on the complexity of the event (number and size of the clusters), mostly due to CPU scaling.

Speed-up from GPU Acceleration in Relation to the CPU Implementation

Nuno dos Santos Fernandes 15GPU Acceleration of ATLAS Calorimeter Clustering

-

Source: ATLAS HLTCalo Public Plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTCaloPublicResults#EF_Calo_Algorithms

• Main bottleneck: converting the GPU data structures representing the clusters back to CPU-compatible structures

• Potential improvements by offloading ~3 ms of the conversion to the GPU, but the bottleneck would remain given
the constraints of pre-existing CPU data structures used in other portions of the code

• Ongoing effort to develop a general solution for an Event Data Model (EDM) with CPU and GPU compatibility
requiring minimal boilerplate, with the possibility of providing an API that matches pre-existing code

Breakdown of GPU Execution Times

Nuno dos Santos Fernandes 16GPU Acceleration of ATLAS Calorimeter Clustering

EDM Developments

EDM Developments: Marionette

• Marionette: Memory Abstracted Representation with Interfaces in Objects Necessitating
Extensively Templated Types EDM

• Goal: provide a more general solution to handle data structures that are meant to be usable
on a CPU and a GPU (or a hardware accelerator in general) with a “single source of truth”

 User-friendly, array-of-structs interface over the underlying struct-of-arrays
 Arbitrarily extensible interface to enable compatibility with existing code
 All the interface composition and data description handled at compilation time: no

runtime polymorphism, the basic data structures are (almost) trivially copyable
 No need to explicitly define CPU and GPU data structures and transfers “by hand”,

but specializations by the end user are fully possible
• Basic idea: decouple the description of the data to be stored from the way it which it will be

laid out in memory: the data description is used to define the final data representation
 The user simply provides a list of “properties” and specifies the layout
 Strategic usage of macros allows injecting the name of the property as a part of the

interface generated from it, for intuitive getter/setter behaviour: clusters[i].eta()
• Current status: the implementation works as intended and generates the same assembly as

the equivalent handwritten structures, even for a complex example with GPU usage
 Work in progress to reduce compilation times and further extend functionality

Nuno dos Santos Fernandes 18GPU Acceleration of ATLAS Calorimeter Clustering

https://gitlab.cern.ch/dossantn/edm-overhaul

Marionette GPU Usage Example

//Declare two float properties with up to 256 entries, called 'energy' and 'time', associated with each entry of the collection.
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(energy, Energy, 256, float); //provides x.energy() and x.setEnergy()
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(time, Time, 256, float); //provides x.time() and x.setTime()

struct Foo : Marionette::InterfaceDescription::NoObject {
template <class Final, class Layout> struct ObjectFunctions { //Define a property that adds a function

int foo() const { return 42; } //to objects, but not the collection.
};

};
struct Bar : Marionette::InterfaceDescription::NoObject {
template <class Final, class Layout> struct CollectionFunctions { //These functions can refer to other functions

void bar() { static_cast<Final *>(this)->energy()[0] *= 1.21e9f; } //of the final collection or object via CRTP...
};

};

//Define the list of properties to be used (the ones we defined earlier)
using ExampleProperties = Marionette::InterfaceDescription::PropertyList<Energy, Time, Foo, Bar>;

//Define the actual classes that hold memory as a struct-of-arrays with a fixed maximum size
template <class Context> using OurCollection =

Marionette::Collections::Collection<Marionette::LayoutTypes::DynamicStructInContext<Context, int>, ExampleProperties>;
using CPUCollection = OurCollection<Marionette::MemoryContexts::CUDAHostPinned>; //Pinned CPU memory for faster transfers
using GPUCollection = OurCollection<Marionette::MemoryContexts::CUDAStandardGPU>; //Normally allocated GPU memory

//Finally, the implementation:
CPUCollection coll(42); //Instantiate a collection of 42 elements
std::vector<float> desired_times(50, 10.f); //Instantiate a vector for initialization
coll.time() = desired_times; //coll.time() behaves as a vector of times

GPUCollection gpu_coll = coll; //Copy-construct a new collection, held on the GPU
some_kernel<<<4, 64>>>(Marionette::Collections::pass_by_value(gpu_coll)); //Pass that collection to a GPU kernel
coll = gpu_coll; //Copy-assign back to the CPU collection

Nuno dos Santos Fernandes 19GPU Acceleration of ATLAS Calorimeter Clustering

Summary and Future Efforts

Summary and Future Efforts

• Topo-Automaton Clustering fully implemented and working, for cluster growing, cluster splitting and cluster
moments calculation, with configurability on a par with the CPU implementation (essentially, drop-in replacement)

• A very significant speed-up was found (factor of ~5.9 for di-jet events, ~8.9 for denser tt events)
 This despite a significant portion of the GPU event processing time (60~70%) is spent in data conversions
 Efforts to improve this bottleneck are under way, but it is a complex issue due to the well-established CPU

structures and the nature of the underlying EDM approach

• Marionette may provide a general solution to mitigate the data structure conversion overhead
 Some technical hurdles still to be overcome, but the current iteration of the Marionette framework works
 Integration with the current implementation of Topo-Automaton Clustering to follow

• Preliminary work started on assessing the feasibility of performing at least some cluster calibrations on the GPU

• Lessons learned and experience gained from this development have fed back into general hardware acceleration-
related development within ATLAS and in particular the ATLAS Trigger

• A final decision on using this approach in the ATLAS Trigger depends on a general technical assessment of the
feasibility and/or performance of GPU-accelerated algorithms, being scheduled for next year
 The approach is also being considered for offline reconstruction on grid sites where GPUs are available

-

Nuno dos Santos Fernandes 21GPU Acceleration of ATLAS Calorimeter Clustering

Thank you for your attention!

Backup Slides

Conditions of the Benchmarking

• Samples correspond to two kinds of Monte-Carlo simulated events:

 tt events: 3000 events, 𝜇 = 80

 di-jet events: 10000 events, 𝜇 = 200

• Results were obtained on a remote server provided by the Brookhaven National Laboratory:
GPU is a Tesla P100, CPU is a Xeon E5-2695 v4

• Time measurements were based on a per-thread clock

 For a single thread, “any clock” would work

o The CPU – GPU comparison is a bit lopsided, though…

 For more threads, timing and speed-up are representative, but throughput is a best-case estimate

o Essentially, we are assuming everything is always running in parallel

 This is due to several limitations when trying to benchmark within the ATLAS software

-

Nuno dos Santos Fernandes 24GPU Acceleration of ATLAS Calorimeter Clustering

Breakdown of GPU Execution Times

Nuno dos Santos Fernandes 25GPU Acceleration of ATLAS Calorimeter Clustering

Signal-to-noise ratio
in total ordering

High bit to distinguish valid tags from terminal and growing cells

12 bit counter (212 − 1 − #propagations)

Index of the seed cell

Assumptions:

• Less than 𝟐𝟏𝟔 = 𝟔𝟓𝟓𝟑𝟔 clusters

• Less than 𝟐𝟏𝟐 propagation steps

Flag for preventing merges through seed cells
(1 only in some edge cases with non-absolute value thresholds)

Topo-Automaton Cluster Growing – Anatomy of a Tag

Nuno dos Santos Fernandes 26GPU Acceleration of ATLAS Calorimeter Clustering

Cell energy
(all set for original clusters)

Primary maxima flag

12 bit counter (212 − 1 − #propagations)

Index of the cell (or cluster index for original clusters)

Assumptions:

• Less than 𝟐𝟏𝟔 = 𝟔𝟓𝟓𝟑𝟔 clusters

• Less than 𝟐𝟏𝟐 propagation steps

Non-shared cells flag

Topo-Automaton Cluster Splitting – Anatomy of a Tag

Nuno dos Santos Fernandes 27GPU Acceleration of ATLAS Calorimeter Clustering

1F

0800 01

09

02

0A 0B

13 14

20

15

16

03

0C 0D

04

17

22

18 19

23 24

05

0E 0F

06

10 11

1A

25 26

1C

07

12

1D 1E

27

28

29

36

2A 2B

37 38

2C 2D

39 3A

31 32

3D 3E

33 34

3F 40

35

41

42 43 44 45

2E 2F

3B 3C

1B

21

Example Cell Indices

Nuno dos Santos Fernandes 28GPU Acceleration of ATLAS Calorimeter Clustering

47

633C 24 4B

63 6A

07 64

5B

5D

45

64

63 61

5D

55

59 59

57 4D

05

61 65

6A

65 59

5A

4F 60

68

55 4D

64

65

44

5B 4F

4C 2D

0C 75

31 6A

5A 5C

57

5D 64

61 49

3F 0D 5A 7C

58

5A 54

60

07

Example Cell Energies Bit Patterns

Nuno dos Santos Fernandes 29GPU Acceleration of ATLAS Calorimeter Clustering

Topological Cluster Growing – Description

Nuno dos Santos Fernandes 30GPU Acceleration of ATLAS Calorimeter Clustering

• Cluster growing starts by classifying the cells using the signal-to-noise ratio of the energy deposition, according
to three thresholds:

• Seed cells are the origin of the clusters we construct, so we sort them by the signal-to-noise ratio and add them
to the list of current cells, and we now iterate until that list is empty:
 For every cell in the list of current cells, we will check each of its direct neighbours:

o If the neighbour does not belong to a cluster and its signal-to-noise ratio is above 𝑇𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,
 Add it to the currently considered cell’s cluster
 If its signal-to-noise ratio is above 𝑇𝑔𝑟𝑜𝑤, add it to a list of next cells

o Else, if it already belongs to a cluster and its signal-to-noise ratio is above 𝑇𝑔𝑟𝑜𝑤, merge the two clusters:
all cells of the smallest cluster get added to the largest cluster

 Once all cells have been checked, the list of next cells becomes the new list of current cells

𝑇𝑠𝑒𝑒𝑑

𝑇𝑔𝑟𝑜𝑤

𝑇𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
Invalid cell

Terminal cell

Growing cell

Seed cell

𝑇𝑠𝑒𝑒𝑑

𝑇𝑔𝑟𝑜𝑤

𝑇𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

Next Cell

Current Cell

Seed Cell

Growing Cell

Terminal Cell

A

C

C

B

A

D

E

C

C

B

B B

B

A

D

A

C E

E

D

D

D

E

C

C

C

B

B B B

B

A

D

A A

A

C

E

D D

D

D

C C

B

B

B

B B

B A

B

B

A

C

C

B

B

B

B

B

B

B B

B

B

B

C

C

B

B B

B

A A

A

C

B A

A

C

BB

B

B

B

B

B

B A

A

A

A

C

C B

B A

A

C

BB

B

A

A

A

C

A

A

C

A A

C

A

A

A A

A

A

A

C A

A

A

A

A

A A

A

A

AAA

C

C C

C

C

C

C

B

B

B B

B

B

B

B B

B B

B A

A

A A

B A

B B

A

A A

A

A A

A

A

C

C C

C C

E

E E

B B

B B

B A

B A

A

C B A

B B

E B

Topological Cluster Growing – Example

Nuno dos Santos Fernandes 31GPU Acceleration of ATLAS Calorimeter Clustering

Topological Cluster Splitting – Description I

Nuno dos Santos Fernandes 32GPU Acceleration of ATLAS Calorimeter Clustering

• Starting from the post-growing clusters, we find the local maxima of the deposited energy checking only within
the post-growing cluster (and also taking into account some thresholds in energy and number of neighbours)

• Some calorimeter sampling layers give rise to secondary local maxima; secondary maxima that overlap with
others through (next/prev)(InSamp/InCalo) neighbours are excluded

• Create a cluster for every local maximum, add the cells to the list of current cells, and iterate until the list is empty:

 Sort the list of current cells by their energy

 For every cell in the list, check each of its direct neighbours that is part of the same post-growing cluster:

o If it does not belong to a cluster, add it to the current cell’s cluster and to a list of next cells

o Else, if it already belongs to a cluster, check if it is part of the list of next cells; if it is, remove it from that
list, add it to a list of next shared cells and add it to the current cell’s cluster as well

 The list of next cells becomes the new list of current cells

 Sort the list of next shared cells by energy and add it to the list of shared cells

• Add all elements of the list of shared cells to the (now empty) list of current cells

Topological Cluster Splitting – Description II

Nuno dos Santos Fernandes 33GPU Acceleration of ATLAS Calorimeter Clustering

• Iterate again until the list of current cells is empty:

 For every cell in the list , check each of its direct neighbours that is part of the same post-growing cluster:

o If it does not yet belong to a cluster, add it to both of the current cell’s clusters, add it to the list of shared
cells and add it to a list of next cells

 The list of next cells becomes the new list of current cells

 Sort the list of current cells by energy

• For every cell in the list of shared cells, calculate the weight of its contribution to each cluster:
𝑤1 =

𝐸1

𝐸1+ 𝑟 𝐸2
, 𝑤2 = 1 − 𝑤1, with 𝑟 = 𝑒𝑑1−𝑑2 and 𝑑𝑖 being the distance from the cell to the centroid of cluster 𝑖 in

units of typical shower scale (∼ 5 cm)

• The resulting clusters are the final clusters

 Post-growing clusters that had no local maxima are also part of the final clusters, unchanged by cluster splitting

A2

A1

B1

C1

B2B4

B3C2 A3

A1 A1

A1

B1

B1 B1

B1 B1

A2

A2 A2

A2

A2

C1

C1

B2

B2

2A3

2A3

A3

C1

B1

A1

B2

A3

A2

A2

A2

A2

A3

A1 A1

A1

B2

B2

B1

C1 B1

B1 B1

B1

C1 A3

C1

C1

B1

B1 B1

A2 A2

B2

B2

B1 B1

B2

C1

C1

B1

B1

B1 B1

B1

A1

A2

A1

A1

A2

A3

B2

B2

A2

C1

C1 B1

B1

B1

B1

B1

A2 A2

B2

B2

B2

B1

C1 B2

B2

B2

B1

B1

C1

C1

B2

B1

1B2

2A3

C1

C1

B1

B1

B1 B1

B1

B2

B2

B2

A2 A2

C1

C1 C1

B1

B1

B1 B1 B2

B2

B2

C1

C1C1

C1

C1

C1

B1

B1

B2

B1

B2C1 C1

C1 B2B1

C1

C1

C1

C1

C1

C1

C1 C1

C1

2A3

A2

A3

A2

A3

B1

B2

A
2

A
3

2A3

2A3

A
2

A
3

2A3A2 A3

E

E E E

Topological Cluster Splitting – Example

Nuno dos Santos Fernandes 34GPU Acceleration of ATLAS Calorimeter Clustering

Cluster Moments Calculation

Nuno dos Santos Fernandes 35GPU Acceleration of ATLAS Calorimeter Clustering

• While the calculation of cluster moments is not the focus of the current discussion, it is useful to provide a few
remarks, especially to better understand some of the comparisons we will show later

• Many moments are weighted averages of cell properties (typically with 𝑛 ∈ {1, 2}):

• Some moments depend on the shower axis 𝑆 (the direction of flight of the particle responsible for the shower):

 Find the centroid of the cluster taking into account only cells with positive energy, 𝐶 = (𝐶𝑥, 𝐶𝑦 , 𝐶𝑧)

 Define a matrix M such that its components are:

 The shower axis is the normalized eigenvector of M that has the smallest angle to the direction of 𝐶, as long
as that angle is smaller than a threshold (typically 20º) and the cluster has at least 3 cells with positive energy

 Otherwise, the shower axis is taken to be the direction of 𝐶: 𝑆 = 𝐶/ 𝐶

• Some other moments (e. g. isolation, significance, second time) have different definitions

Ξ𝑛 =

𝑐∈cluster:𝐸𝑐>0
𝑤𝑐𝐸𝑐 Ξ𝑐

𝑛

𝑐∈cluster:𝐸𝑐>0

𝑤𝑐𝐸𝑐

M𝑖,𝑗 =

𝑐∈cluster:𝐸𝑐>0
𝑤𝑐

2𝐸𝑐
2(𝑥𝑖(𝑐) − 𝐶𝑖)(𝑥𝑗(𝑐) − 𝐶𝑗)

𝑐∈cluster:𝐸𝑐>0

𝑤𝑐
2 𝐸𝑐

2

Topo-Automaton Cluster Growing – Description

Nuno dos Santos Fernandes 36GPU Acceleration of ATLAS Calorimeter Clustering

• Classify each cell according to the signal-to-noise ratio, as in standard topological clustering:
 Invalid, terminal and growing cells get assigned values that do not correspond to valid tags (0, 1 and 263 − 1,

respectively, though the choice is arbitrary as long as they are ordered and compare lower than any valid tags)
 Seed cells are assigned a tag constructed as previously shown, with a counter for the cluster index being used

(and incremented afterwards) to ensure the indices are sequential, and the corresponding entries of the seed
cell index to cluster map and the cluster index to seed cell map are updated with the appropriate values

• Create two lists of pairs of neighbouring cells: the list of growing pairs for pairs of cells where both are growing
or seed, and the list of terminal pairs where one is growing or seed and the other is terminal
 Given that the neighbourhood relations are not necessarily symmetric, this is a list of ordered pairs: we will

only consider propagation in a particular direction (by convention, from the second to the first cell of the pair)
• Keep iterating over all pairs of cells in the list of growing pairs until there are no tag changes:

 If the second element of the pair is not part of a cluster, ignore this pair
 Decrement the counter of the second element’s tag and unset the cell merging flag to get the propagated tag
 If the first element does not have a valid cluster tag, it gets the propagated tag (e. g. via an atomic maximum)
 Else, if it is part of a different cluster, assign the highest of the two cluster indices to the entries of the seed

cell index to cluster map and take the maximum between the entries of the cluster index to seed cell map
• For every pair of cells in the list of terminal pairs, propagate the tag from the second element to the first

Cell to
Cluster Map

…
07 – 0A

…
18 – 0B

…
20 – 0C

…
31 – 0D

…
3A – 0E

…

0BC

C C

C

C

C

C

B

B

B B

B

B

B

B B

B B

B A

A

A A

B A

B B

A

A A

A

A A

A

A

C

C C

C C

E

E E

B B

B B

B A

B A

A

C B A

B B

E B

Topo-Automaton Cluster Growing – Example

Nuno dos Santos Fernandes 37GPU Acceleration of ATLAS Calorimeter Clustering

Topo-Automaton Cluster Splitting – Description I

Nuno dos Santos Fernandes 38GPU Acceleration of ATLAS Calorimeter Clustering

• Create four lists of ordered pairs of neighbours (similar to cluster growing) that will be used within the algorithm:
 Pairs within the same post-growing cluster that will be used to expand the split clusters
 Additional pairs used for checking the local maxima (due to certain neighbour options being ignored)
 Pairs of next(InSamp/InCalo) neighbours regardless of the original post-growing cluster
 Pairs of prev(InSamp/InCalo) neighbours regardless of the original post-growing cluster

• Use the first two lists of pairs to check for local maxima: exclude every cell that has a neighbour with equal or
greater energy, check the remaining ones for the thresholds in energy and number of neighbours

• Local maxima are assigned a tag calculated as shown before (again using a counter and incrementing afterwards to
get an index for every cluster) and the original cluster is stored in the cluster index to original cluster map; other
cells belonging to clusters are assigned a tag that has the cluster index in the 18 lowest bits, and the first bit of the
energy set if the post-growing cluster has local maxima, or all other bits and flags set if it does not

• Consider two separate sets of tags, one for next neighbours, the other for prev; every primary local maximum will
be assigned the value of 264 − 1, the secondary local maxima get their regular tags, all other cells are initialized to 0

• Keep iterating through the pairs of next and prev neighbours until there are no tag changes: if the second
element of the pair has a non-zero tag, propagate it to the first

• Any secondary maxima that got their tag replaced in either set of tags should be excluded and their tags set to one
that identifies a cell belonging to the original cluster, for all others set the primary flag (as there are no further
distinctions between primary and secondary maxima in later stages of the algorithm)

Topo-Automaton Cluster Splitting – Description II

Nuno dos Santos Fernandes 39GPU Acceleration of ATLAS Calorimeter Clustering

• Keep iterating until there are no tag changes:
 Set a reset counter to 0
 Iterate through the first list of pairs of neighbouring cells:

o If the second element of the pair is not part of a cluster created from a local maximum, ignore this pair
o Decrement the counter of the second element’s tag (or set it to 𝟐𝟏𝟐 − 𝟏 if the second element is a shared

cell and the counter is higher than this value) and unset the primary flag to get the propagated tag
o If the first element does not have a valid cluster tag, it gets the propagated tag (e. g. via atomic maximum)
o Else, if its reverse propagation counter is the same as the propagated tag’s and it belongs to a different

cluster, assign to it a tag that signals this is to become a shared cell: first flag and all bits of the counter
set, second flag unset, and the energy and index the same as the propagated tag; also set the reset counter
to the maximum between its current value and the reverse propagation counter of the original tag

 Iterate through all cells that are part of a cluster created from a local maximum:
o If the cell’s reverse propagation counter is lower than the reset counter, assign to it the tag of a cell that

belongs to its original post-growing cluster (and thus not to a local maximum)
o Update the cell index to cluster map with the new cluster assignment (in the case of shared cells, the

highest cluster index is in the most significant bits and the lowest in the least significant bits)
o Update the tag with the energy and index of this cell

Secondary cluster index

Topo-Automaton Cluster Splitting – Description III

Nuno dos Santos Fernandes 40GPU Acceleration of ATLAS Calorimeter Clustering

• Calculate the centroid of the split clusters: the absolute-energy-weighted sum of the non-shared cells’ coordinates
• Assign appropriate weights to the contribution of the shared cells to each of the clusters:

 As before, the weight is calculated by: 𝑤1 =
𝐸1

𝐸1+ 𝑟 𝐸2
, 𝑤2 = 1 − 𝑤1, with 𝑟 = 𝑒𝑑1−𝑑2 and 𝑑𝑖 being the distance

from the cell to the centroid of cluster 𝑖 in units of typical shower scale (∼ 5 cm)
 The choice of indices is such that 𝑤1 ≤ 𝑤2, to minimize potential precision loss

• We express the final cluster assignment with a different tag format:

Secondary cluster weight
(highest bit is 0 since
it’s in absolute value)

High bit to mark valid cluster tags Primary cluster index

💾

↺

Temp.
Cell
State

💾

↺

↪

↩

Cell to
Cluster
Map

↪

↩

Reset
Counter

003E3D3C

C1

B1

A1

B2

A3

A2

C1

C1

B1

B1

B1

B1

A1

A2

A1

A1

A2

A3

B2

B2

A2

C1

C1

B1

B1

B1 B1

B1

B2

B2

B2

A2 A2

C1

C1

C1

B1

B1

B2

B1

B2

B2B1

C1

C1

C1 C1

C1

A2

A3

A2

A3

B1

B2

A
2

A
3

A
2

A
3

A2 A3

E

E E E

B1

Topo-Automaton Cluster Splitting – Example

Nuno dos Santos Fernandes 41GPU Acceleration of ATLAS Calorimeter Clustering

