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Problem Statement: The Need for Advanced Tracking Methods

Unprecedent scale of modern experiments:

• Up to 200 simultaneous proton-proton interactions is 
expected at High Luminosity Large Hadron Collider

• 200 particle tracks on average, 40K of tracks 
considering pile-up

• Traditional tracking methods struggle with dense, 
overlapping particle tracks due to computational 
complexity and time constraints

Deep Learning for Efficient Track Reconstruction:

• DL models can handle high-dimensional data and 
complex spatial correlations between tracks 

• Coulomb scattering and inhomogeneous magnetic field 
effects could be learned from training data

• Effective parallelization using GPUs out of the box

• TrackML Challenge was launched to explore new 
scalable approaches for particles tracking

https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity

Deep learning-based methods have a 

potential to cope with immense data 

volumes in modern experiments
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https://home.cern/science/accelerators/high-luminosity-lhc
https://www.kaggle.com/c/trackml-particle-identification
https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity


Classification of Track Reconstruction Methods

Local Tracking

Works with parts of event data (hits, track 
segments, detector parts). 

Examples: Cellular Automaton, Kalman 
filter (stands apart, bunch of methods)

Pros:

• High parallelism (individual tracks)

• Lightweight and fast

• Low memory use

Cons:

• Requires post-processing for full event 
reconstruction

• Prone to false positives (due to lack of 
full event view)

Global Tracking

Uses full event data for track reconstruction.                          

Examples: Graph Neural Networks, Hopfield 
network, Point Cloud Processing.

Pros:

• Higher quality metrics, fewer false positives

• Event-level parallelism possible

Cons:

• High memory requirements (entire event as 
input)

CNNs on FPGAs for 

Track Reconstruction

Graph Neural Networks in Particle Physics23 October, Kraków, CHEP 2024 3

https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://arxiv.org/abs/2007.13681


Hybrid Tracking Methods

Hybrid Tracking

Combines local and global tracking methods.

Stages

1. Track seeding, track candidates or event graph building. Main goal: high recall while reducing the number of 
false positives as much as possible.

2. Tracks selection either by various fitting criteria or ranking candidates using machine learning methods (e.g. 
graph sparsification, candidates’ classification). Main goal: increase precision without recall dropping.

Pros:

• Achieves both high performance and efficiency.

Cons:

• Errors depend on multiple models.

Input Event 

Hits

Clustering hits into 

track segments

Event graph 

construction
Graph 

Sparsification
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TrackNET as Local Tracking Method

How the model works?

• Locality – one track-candidate during the inference

• The model predicts center and radius of the sphere 
where to search for the next hit

• All event hits are placed in the spatial search index

• Only K nearest to the center of sphere hits are 
checked (setting K=1 leads to linear computational 
complexity)

• Candidate tracks are extended by hits that fall into 
sphere.

• Extended track-candidates are fed back to the 
model input.Model Architecture

Pros:

• Fast and Extremely Lightweight 

• Few hyperparameters to tune – loss weights and K 

• No need for seeding – prediction starts from single hit

Cons:

• Big number of false positives, because of its 

local nature of prediction

• Sequential inference (station by station)
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StepAhead TrackNET: Dealing with Detector Inefficiency

• The network is designed to predict the continuation of a track even when multiple hits are missing.

• It predicts two steps ahead simultaneously (covering two spheres of potential hit locations).

• If no hit is found in the 1st sphere, the 2nd sphere is checked.

• When a hit is in the 2nd sphere, the track is extended using a virtual point at the center of the 1st sphere.

• While predictions based on the first sphere are less accurate (due to larger uncertainty), this broader search 

radius helps locate the next track hits.

• However, using a virtual point in place of a missing hit for the very first prediction (first hit and virtual point) 

can introduce confusion. To mitigate this, track candidates without hits in the first sphere are temporarily 

saved and extended later using both the virtual point and the hit from the second sphere.
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Simulated Toy Data

• Python script generates events with 1-10 random tracks.

• Transverse momentum: 100-1000 MeV/c (uniform).

• Random vertex coordinates within the collision area.

• Trajectories follow a helical path, defined by the pitch 

and radius equations.

• Simulated detector with 35 stations.

• Fake and noise hits simulated using randomly sampled 

points in detector space.

• Pile-up modeled by creating time slices of 40 events.
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Statistics

• Around 200 tracks per time slice.

• ~1,100 hits per station (total: ~38,200 hits).

• 82.26% of hits are fake.

Helix



Toy Dataset Results
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Testing setup:

• 200 000 events (5 000 time slices) 

• Xeon(R) Gold 6148 CPU @ 2.40GHz

• NVIDIA Tesla V100 32GB

• No tracks with less than 4 hits

Used Metrics:

Recall = 
𝑁𝑡𝑟𝑢𝑒
𝑟𝑒𝑐

𝑁𝑡𝑟𝑢𝑒
; Precision = 

𝑁𝑡𝑟𝑢𝑒
𝑟𝑒𝑐

𝑁𝑟𝑒𝑐

- 𝑁𝑡𝑟𝑢𝑒
𝑟𝑒𝑐 - No. of correctly reconstructed true tracks.

- 𝑁𝑡𝑟𝑢𝑒 – No. of correctly reconstructed true tracks.

- 𝑁𝑟𝑒𝑐 – Total number of reconstructed tracks.

Model TrackNET StepAhead TrackNET

Detector Efficiency (%) 100 99 98

Recall (%) 96,54 95,48 93,87

Precision (%) 94,75 94,74 93,46

Speed (time slice / sec) 63,378 34,534 34,849

Speed (events / sec) 2549,52 1381,39 1393,98



Simulation of BM@N Run 7 Data
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• BM@N is a fix target experiment at NICA, 

JINR

• Tracking detector consists of the two main 

parts: silicon tracker (ST) and GEM detector

• ST has 3 stations, GEM – 6 stations

Monte-Carlo Simulation:

• 1m Ar+Pb events with 3.2 GeV (LAQGSM generator)

• Multiplicity up to 100, mean – 37 tracks

• Number of hits can be more than 500 per station

• ~68% of all hits are fakes (strip detectors specifics)



BM@N Run 7 Simulation Results
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Testing setup:

• Two test sets – without missing hits ("easy"), and 

with inefficiency ("hard"), 25K events each

• Xeon(R) Gold 6148 CPU @ 2.40GHz + NVIDIA 

Tesla V100

• Tracks with less than 4 hits and spinning tracks 

are removed

Model Two-stage tracking 

(TrackNET + GNN) 

Step Ahead TrackNET

(optimized inference)

Dataset easy hard

Recall (%) 94,70 88,23

Precision (%) 77,06 0,16

Speed (events / sec) 7,5 48,16

Details:

• Easy data: TrackNET outputs were fed to Graph 

Neural Network

• Hard data: Optimized inference with Torchscript

and KNN search on GPU

• After graduation I lost access to the data, so the 

work is unfinished



TrackML Particle Tracking Challenge

• 100 GB of simulated data encompassing around 10,000 
events

• 10000 tracks per event on average

• Each track has about 10 hits – 100000 signals in one event

• Straight-line tracks (high momentum) are rare and has more 
weight in competition scoring function
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https://www.kaggle.com/c/trackml-particle-identification/overview

Noticeable participants:

• 1st: top-quarks – Logistic regression for pairs and triplets, helix extrapolation (8 min/event).

• 2nd: outrunner – Dense NN for pair prediction, circle fitting (3+ hrs/event).

• 3rd: Sergey Gorbunov – Triplet seeds, helix fit with magnetic field estimation (0.56 sec/event).

• 9th: CPMP – DBSCAN clustering, filtered by module frequency (10 hrs/event, 30,000+ DBSCAN runs).

• 12th: Finnies – DBSCAN seeding, LSTM for predicting next 5 hits (slow, no speed given).

Most of the solutions repeat the classical pipeline for tracking – seeding followed by trajectory fitting.

https://www.kaggle.com/c/trackml-particle-identification/overview


TrackNET Training Overview on TrackML Dataset

Space shrinking/compression: 

• for external detectors, the distance between layers is 
~2 times larger than for internal ones. Shrink the space 
of external detectors by factor two.
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Multiple hits on the same layer during training due to 
modules intersections: 

• take the closest one (least r in cylindrical coordinates)

Picking seeds: 

• taking all hits from the innermost layers

Training

• 10 mln tracks, 300 epochs

• 15 hours on single Nvidia V100 32GB

• weight in TrackNET loss alpha = 0.9999 

because of unnormalized coords and large 
detector

The Tracking Machine Learning challenge: Accuracy phase

https://arxiv.org/abs/1904.06778


TrackML Evaluation Results (work in progress)
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Testing setup:

• Xeon(R) Gold 6148 CPU @ 2.40GHz (only CPU, 
optimization of memory operations is required)

• No data reduction based either on particle momentum 
(no pt​ cut) or number of events (original pile-up)

• No specific tuning for the TrackML scoring metric –
considering all tracks with equal importance

• Following TrackML metric, a track is considered fully 
reconstructed if >50% of hits were recognized correctly

• In case of duplicate track candidates, only one is included 
in the final metrics

K searched hits 1 2

Recall (%) 35,15 56,41

Precision (%) 33,47 1,01

Event processing time (sec) 6,4289 45,2144

Notes: 

• Building precision vs pt plot requires momentum 
estimation for the track-candidates 

• I’ve found a bug in preprocessing, didn’t have 

enough time to retrain the model, but the results 
may be better

Statistics on 10 events (100K tracks)



Conclusion

• The TrackNET model demonstrates high performance even in challenging, noisy environments (e.g., 
handling fake hits in microstrip detectors).

• Due to the model's local nature, a second stage of track-candidate selection is necessary to further improve 
precision.

• The model's first application to the TrackML dataset has been successfully conducted.

• Further work is needed to enhance performance: tuning to the TrackML scoring metric, applying data 
reductions, and balancing training samples based on relevance.

• Without any optimizations, the model processes an average TrackML event in approximately 7 seconds on a 
single CPU (K=1).

• The code of TrackNET application to TrackML data will be open-source soon.
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One end-to-end model to rule them all for tracking? 

• Graph-based event representation is not compact; segments increase 
rapidly with pile-up.

• Point-cloud representation offers better scalability, allowing models to 
learn signal relations (e.g., attention).

• Point-clouds enable unsupervised pretraining on experimental data 
(e.g., predicting hits in selected areas like masked language modelling).

• Using bare hit coordinates causes information loss; it's better to work 
with raw data (e.g. fakes after signal digitalization in microstrip 
detectors).

• Transformer models are data-agnostic, allowing direct use of raw 
detector data.

• Idea: Divide the detector space into voxels, process each voxel with an 
encoder (e.g., PointNet), then apply multi-head attention on patch 
representations for tracking.

• Potential training objectives: instance segmentation, track parameter 
prediction, or clustering via learned hit vector representations.

• Example: Point Cloud Transformers have been successfully applied for 
signal segmentation.
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https://link.springer.com/article/10.1134/S1063779624030638
https://link.springer.com/article/10.1134/S1063779624030638
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