Data-driven efficiencies of the LHCb High-Level Trigger in Run 3

Johannes Albrecht, Jamie Gooding, Maxim Lysenko, Alessandro Scarabotto On behalf of the LHCb collaboration

Track 2, CHEP 2024, Kraków, 22nd October 2024

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Jamie Gooding Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

LHCb Run 3 Trigger Diagram

The LHCb Trigger in Run 3

For more, see talks at CHEP 2024 on 21.10:

- Trigger: talk by Alessandro in Track 2
- Offline processing: talk by Nicole in Track 3

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

SMA HEP

REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

• In principle, efficiencies should be as simple as $\varepsilon_{\text{Trig.}}^{\text{True}} = N_{\text{Trig.}} / N_{\text{All}}$

Data driven trigger efficiency determination at LHCb <u>LHCb-PUB-2014-039</u>

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

- In principle, efficiencies should be as simple as $\varepsilon_{\rm Trig.}^{\rm True} = N_{\rm Trig.}/N_{\rm All}$
- In practice, our data has no "truth" information:
 → How can we calculate a trigger efficiency? We'll need some categories...

Data driven trigger efficiency determination at LHCb LHCb-PUB-2014-039

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

- In principle, efficiencies should be as simple as $\varepsilon_{\rm Trig.}^{\rm True} = N_{\rm Trig.}/N_{\rm All}$
- In practice, our data has no "truth" information:
 → How can we calculate a trigger efficiency? We'll need some categories...

Data driven trigger efficiency determination at LHCb LHCb-PUB-2014-039

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

"Triggered on signal" events

70% of all hits in common with hits of signal candidate

- In principle, efficiencies should be as simple as $\varepsilon_{\text{Trig.}}^{\text{True}} = N_{\text{Trig.}}/N_{\text{All}}$
- *In practice*, our data has no "truth" information: \rightarrow How can we calculate a trigger efficiency? We'll need some categories...

"Triggered independent of signal" events "Triggered on signal" events Any candidate has < 1% of hits in common 70% of all hits in common with hits of with hits of signal candidate signal candidate

Jamie Gooding

- Data driven trigger efficiency determination at LHCb <u>LHCb-PUB-2014-039</u>
- Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

• From the TISTOS categories, define tag-and-probe efficiencies:

(ε_{TOS} in the TIS subsample)

- But these only cover the tagged subsample...
- Assuming TIS efficiency ($\varepsilon_{\text{TIS}|\text{TOS}}$) identical for any subsample ($\varepsilon_{\text{TIS}} \equiv \varepsilon_{\text{TIS}|\text{TOS}}$), define a more general trigger efficiency (across all events):

But does the assumption above hold? Need to account for TIS-TOS correlation Data driven trigger efficiency determination at LHCb <u>LHCb-PUB-2014-039</u>

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

- $\varepsilon_{\text{Trig.}} = \frac{N_{\text{Trig.}} N_{\text{TISTOS}}}{N_{\text{TIS}} N_{\text{TOS}}}$

- Correlation between TIS and TOS from correlation of signal and "rest of event"
- In sufficiently small phase-space (signal p_T , p_7 , etc.), correlation negligible
- Integrate TIS/TOS/TISTOS terms over phase space (see right):

$$\varepsilon_{\text{Trig.}} = \frac{N_{\text{Trig.}}}{\sum_{i} \frac{N_{\text{TIS}}N_{\text{TOS}}}{N_{\text{TISTOS}}}}$$

where each *i* is a sufficiently small phase space bin

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

Data driven trigger efficiency determination at LHCb <u>LHCb-PUB-2014-039</u>

Trigger efficiencies in 2024

- Consider 4 different categories of decays:

 - Dimuon *b* decay: $B^+ \to J/\psi \left(\mu^+ \mu^-\right) K^+$ and $B^0 \to J/\psi \left(\mu^+ \mu^-\right) K^{*0} \left(K^+ \pi^-\right)$ • Dielectron *b* decay: $B^+ \to J/\psi \left(e^+ e^- \right) K^+$ and $B^0 \to J/\psi \left(e^+ e^- \right) K^{*0} \left(K^+ \pi^- \right)$ • Hadronic *b* decay: $B^+ \to \overline{D}^0 (K^+ \pi^-) \pi^+$ and $B^0 \to D^- (K^+ \pi^- \pi^-) \pi^+$ • Hadronic c decay: $D^0 \to K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$
- 2024 efficiencies calculated in bins of top-level composite p_T

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

Evaluate HLT1 efficiencies in LHCb 2024 data and compare to Run 2 L0×HLT1 efficiencies

 Run 2 efficiencies sourced from Run 2 trigger performance paper, <u>JINST 14 (2019) P04013</u> L0 trigger lines chosen based on category, e.g., L0Hadron for hadronic decays

Dimuon b decays

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

Dielectron *b* **decays**

Data-driven efficiencies of the LHCb High Level Trigger in Run 3

Jamie Gooding

Track 2, CHEP 2024, Kraków

Hadronic b decays

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

HLT1 trigger efficiencies in 2024 data LHCb-FIGURE-2024-030

Hadronic c decays

HLT1 trigger efficiencies in 2024 data LHCb-FIGURE-2024-030

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków 22nd October 2024

ceptanc ac candidates 0.1 **U**

11

TriggerCalib

- Previously, calculations implemented in each analysis; developed tool to centralise this
- TriggerCalib calculates $\varepsilon_{TOS|TIS}$, $\varepsilon_{TIS|TOS}$, ε_{Trig} .
 - PyPI package: pip install triggercalib
 - Efficiencies calculated in 1D or 2D binning
 - Signal isolated by sideband subtraction/fitand-count (fit in each bin)/sWeights (see right)
 - Support for fitting with both RooFit and zFit
 - Intended for Run 3, applicable to Runs 1 & 2
- Tool is analysis ready, with first users already implementing into analysis workflows

Jamie Gooding Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

Conclusion

- TISTOS method provides data-driven approach to trigger efficiency calculations Successfully validated on Run 3 MC simulation
- HLT1 efficiencies in 2024 data demonstrate significant improvement against Run 2 through removal of L0 (LHCb-FIGURE-2024-030)
 - Notable gains at low p_T in hadronic and dielectron decays \rightarrow plenty of physics for Run 3
- TriggerCalib developed as a one-stop-shop for TISTOS calculations
 - Under development, though ready for analysis and already being adopted within LHCb

Thank you for your attention

Any questions?

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

Jamie Gooding

Backup

The LHCb experiment in Run 3

Framework TDR for the LHCb Upgrade LHCb-TDR-12

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

22nd October 2024

HEP

The LHCb experiment in Run 3

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

22nd October 2024

AHEP

The LHCb experiment in Run 3

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

22nd October 2024

A HEP

Why remove the L0 trigger?

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

TIS phase-space dependence

The LHCb trigger and its performance in 2011 <u>JINST 8 (2013) P04022</u>

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

22nd October 2024

17

The LHCb Turbo event model

A comprehensive real-time analysis model at the LHCb experiment <u>JINST 14 (2019) P04006</u>

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

Offline data processing at LHCb SMARTHER CLAIM ALVESTOR AND INDUSTRY

15 PB / year

RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb detector LHCb-FIGURE-2020-016

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków Jamie Gooding

LHCb user analysis

Jamie Gooding

Data-driven efficiencies of the LHCb High Level Trigger in Run 3 Track 2, CHEP 2024, Kraków

22nd October 2024

SMA HEP REAL-TIME ANALYSIS FOR

