
CHEP 2024, Krakow

An online GPU hit finder for the STS detector in CBM

Felix Weiglhofer

October 23, 2024

Prof. Dr. Volker Lindenstruth

Frankfurt Institute for Advanced Studies

Goethe University Frankfurt



The Compressed Baryonic Matter (CBM) experiment at FAIR

FAIR construction site, Apr. 2024

Render of CBM (© GSI/FAIR, Zeitrausch)

• Fixed target heavy ion experiment

• Under construction at the FAIR facility

• High reaction rates up to 10MHz

• Exp. data rate: > 500GB/s average

• Efficient online reconstruction + event

selection required 1



The Silicon Tracking System (STS) detector

• Closest detector to the target

• High spatial (25 µm) and

temporal (5 ns) resolution

• Key detector for track reconstruction

• 8 stations with ∼ 900 modules total

• Module: double sided sensor with

1024 channels on each side

• ∼ 1.8 million read-out channels

• Hit finder: match data from front and

back side of same particle

2



(online) STS reconstruction

• Raw detector data accumulated into timeslices

• Timeslices unpacked into digis

• Digi: tuple of module, timestamp, channel and charge

• Combine neighboring digis into clusters

• Cluster: 2D object with channel and time

• Combine clusters from front and back side into hits

• Hit: 4D object with global coord and time

• Hits used for track reconstruction

• Hits divided into streams, streams sorted again by time

before passed to tracking

Unpacking

Presort digis
by module side

Sort digis

Find clusters

Sort clusters

Find Hits

Timeslice

Track reconstruction

Per module side

Per module

Digis

Clusters

Hits

Sort Hits

3



(online) STS reconstruction

• Focus of this talk:

• Digi / cluster sorting

• Cluster finding

• Hit finding

• Implementation part of CBMRoot online code

• Written in xpu1

• Compiles GPU code to CUDA, HIP, SYCL or

regular C++ with OpenMP

Unpacking

Presort digis
by module side

Sort digis

Find clusters

Sort clusters

Find Hits

Timeslice

Track reconstruction

Per module side

Per module

Digis

Clusters

Hits

Sort Hits

1https://github.com/fweig/xpu
4

https://github.com/fweig/xpu


Sorting on GPU

• Sort contents of module side (digis or clusters)

• Custom sorting algorithm:

• One GPU block per module side

• Parallel merge sort within block

• Parallel merge step per GPU thread via Merge Path1

• Preserves coalesced memory access within blocks

Further studies: compare with cub::DeviceSegmentedSort2

→ not available during first implementation

1O. Green et al., Merge Path - A Visually Intuitive Approach to Parallel Merging, 2014
2https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html

5

https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html


Cluster finder (sequential)

Sort digis by time

For all digis:

1. Try to mark channel of digi as active

2. If channel already active:

2.1 Create cluster around digi

(neighboring digis must fall within ∆

time)

2.2 Mark channels of cluster as inactive

Assumes sequential processing of digis,

can’t parallelize across digis

→ not suited for GPU

6



Parallel cluster finder

• Sort digis by channel and time instead

• Connect digis in same cluster via linked list

• → Store additional 32 bit connector object per digi

7



Parallel cluster finder

1. Find offset of each channel

2. Create connections:

• Look for candidate C in next channel

• If C found: Set index to C in

connector, set prev bit for C

3. Create clusters:

• Thread of first digi (prev bit not set)

creates clusters

• Iterate connectors to combine digis

Step 2 + 3: Parallel across all digis via atomic operations 8



Hit finding

• Attempt to combine clusters from front and back side

into hits if they overlap in time

• Time sorting required to reduce combinatorics

• Original algorithm1 was straightforward to move to GPU

• Parallel across front side clusters

1H. Malygina, Hit reconstruction for the Silicon Tracking System of the CBM experiment, 2018

9



Performance

The mCBM setup

• Time accumulated over 20

timeslices (2.5 s of data)

• Real data from mCBM

(∼ 160 · 106 digis)

• CPU: Intel Xeon 6130 (16

cores, 32 threads) 10



Kernel times

• Sorting predominant on GPU

• only uses 22 blocks / compute units,

occupies ∼ 1/3 of device!

• Cluster and hit creation can exploit

parallelism on GPU . . .

• . . . but the unmodified GPU code

doesn’t work that well here on CPU

• Hit creation on CPU: static thread

distribution → few threads stuck on

clusters with high combinatorics

11



Conclusion and next steps

• Key steps of hit finder show promising performance on

GPU

• 50% runtime still spent on host

• Unpacking proof-of-concept on GPU

• Shows great performance: 40GB/s per timeslice

• Currently being integrated into CBMRoot

• Remaining steps should be moved to GPU (digi

presorting, hit sorting)

Unpacking

Presort digis
by module side

Sort digis

Find clusters

Sort clusters

Find Hits

Timeslice

Track reconstruction

Per module side

Per module

Digis

Clusters

Hits

Sort Hits

12



Thank you for your attention!



Backup Slides



Kernel times (detailed)



Processing on host

• Digi presorting and hit sorting: should

be moved to GPU eventually

• Hits are stored into buckets, need
separate step to flatten into single
array

→ Done on GPU during device to host

copy.

• Zeroing buffers not yet parallel on host


	Appendix
	Backup Slides


