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The Compressed Baryonic Matter (CBM) experiment at FAIR

FAIR construction site, Apr. 2024

Render of CBM (© GSI/FAIR, Zeitrausch)

• Fixed target heavy ion experiment

• Under construction at the FAIR facility

• High reaction rates up to 10MHz

• Exp. data rate: > 500GB/s average

• Efficient online reconstruction + event

selection required 1



The Silicon Tracking System (STS) detector

• Closest detector to the target

• High spatial (25 µm) and

temporal (5 ns) resolution

• Key detector for track reconstruction

• 8 stations with ∼ 900 modules total

• Module: double sided sensor with

1024 channels on each side

• ∼ 1.8 million read-out channels

• Hit finder: match data from front and

back side of same particle
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(online) STS reconstruction

• Raw detector data accumulated into timeslices

• Timeslices unpacked into digis

• Digi: tuple of module, timestamp, channel and charge

• Combine neighboring digis into clusters

• Cluster: 2D object with channel and time

• Combine clusters from front and back side into hits

• Hit: 4D object with global coord and time

• Hits used for track reconstruction

• Hits divided into streams, streams sorted again by time

before passed to tracking
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(online) STS reconstruction

• Focus of this talk:

• Digi / cluster sorting

• Cluster finding

• Hit finding

• Implementation part of CBMRoot online code

• Written in xpu1

• Compiles GPU code to CUDA, HIP, SYCL or

regular C++ with OpenMP
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1https://github.com/fweig/xpu
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Sorting on GPU

• Sort contents of module side (digis or clusters)

• Custom sorting algorithm:

• One GPU block per module side

• Parallel merge sort within block

• Parallel merge step per GPU thread via Merge Path1

• Preserves coalesced memory access within blocks

Further studies: compare with cub::DeviceSegmentedSort2

→ not available during first implementation

1O. Green et al., Merge Path - A Visually Intuitive Approach to Parallel Merging, 2014
2https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html
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Cluster finder (sequential)

Sort digis by time

For all digis:

1. Try to mark channel of digi as active

2. If channel already active:

2.1 Create cluster around digi

(neighboring digis must fall within ∆

time)

2.2 Mark channels of cluster as inactive

Assumes sequential processing of digis,

can’t parallelize across digis

→ not suited for GPU
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Parallel cluster finder

• Sort digis by channel and time instead

• Connect digis in same cluster via linked list

• → Store additional 32 bit connector object per digi
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Parallel cluster finder

1. Find offset of each channel

2. Create connections:

• Look for candidate C in next channel

• If C found: Set index to C in

connector, set prev bit for C

3. Create clusters:

• Thread of first digi (prev bit not set)

creates clusters

• Iterate connectors to combine digis

Step 2 + 3: Parallel across all digis via atomic operations 8



Hit finding

• Attempt to combine clusters from front and back side

into hits if they overlap in time

• Time sorting required to reduce combinatorics

• Original algorithm1 was straightforward to move to GPU

• Parallel across front side clusters

1H. Malygina, Hit reconstruction for the Silicon Tracking System of the CBM experiment, 2018
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Performance

The mCBM setup

• Time accumulated over 20

timeslices (2.5 s of data)

• Real data from mCBM

(∼ 160 · 106 digis)

• CPU: Intel Xeon 6130 (16

cores, 32 threads) 10



Kernel times

• Sorting predominant on GPU

• only uses 22 blocks / compute units,

occupies ∼ 1/3 of device!

• Cluster and hit creation can exploit

parallelism on GPU . . .

• . . . but the unmodified GPU code

doesn’t work that well here on CPU

• Hit creation on CPU: static thread

distribution → few threads stuck on

clusters with high combinatorics
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Conclusion and next steps

• Key steps of hit finder show promising performance on

GPU

• 50% runtime still spent on host

• Unpacking proof-of-concept on GPU

• Shows great performance: 40GB/s per timeslice

• Currently being integrated into CBMRoot

• Remaining steps should be moved to GPU (digi

presorting, hit sorting)
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Thank you for your attention!
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Kernel times (detailed)



Processing on host

• Digi presorting and hit sorting: should

be moved to GPU eventually

• Hits are stored into buckets, need
separate step to flatten into single
array

→ Done on GPU during device to host

copy.

• Zeroing buffers not yet parallel on host
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