
CHEP2024, Krakow, Poland

Implementation and development of
a DAQ system DELILA at ELI-NP

S. Aogaki
Extreme Light Infrastructure-Nuclear Physics (ELI-NP)

Contents

❖ ELI-NP and VEGA beamline

❖ Basic requirements for a DAQ system

❖ DELILA

❖ Use cases

❖ Conclusion

❖ Future plan

ELI-NP
❖ Extreme Light Infrastructure - Nuclear Physics

❖ Laser and γ-ray beams facility for Nuclear Physics

❖ Laser beamlines are operated

❖ γ will be operated soon

❖ Magurele (near Bucharest), Romania

❖ Magurele is a kind of researchers’ town, science town

❖ Also ELI-ALPS (Hungary) and ELI-Beamlines (Czech)
Google Maps

VEGA

❖ Variable Energy Gamma System at ELI-NP

❖ Up to 19.5 MeV γ-ray beam

❖ Total photon flux 1.0 × 1011/s

❖ Under construction

❖ Full operation 2026

Requirements for DAQ
❖ Support some electronic modules

❖ CAEN digitizers (1725, 1730, 1740), Mesytec ADC TDC

❖ We can add any electronics if we can fetch data by C/C++

❖ e.g. temperature sensor

❖ Open source

❖ We do not want to wait for the update when we need

❖ Network transparency

❖ Controlling some computers from a remote

❖ Using the same clock source at different electronics

DELILA
❖ Digital ELI-NP List-mode Acquisition system

❖ Using DAQ-Middleware

❖ https://daqmw.kek.jp/

❖ Component base system

❖ Easy porting

❖ Based on a robotics technology (RT) !! NOT Real Time

❖ Using ROOT library

❖ https://root.cern/

❖ Monitoring and Recording

❖ JSROOT is awesome! But no nice fitting functions now

❖ Almost all parts are written in C++. The web interface is TypeScript with Angular

Components
❖ Components are started by xinetd or systemd

❖ Basic components

❖ Data fetcher

❖ Recorder

❖ Monitor

❖ Operator component
Data

fetcher

Data
monitor

Data
recorder

Operator Web API

←: Commands
←: DataDELILA

Data fetcher
❖ Two threads

❖ Main thread

❖ Called by the operator component every 1ms

❖ Check whether data is available or not

❖ Sending the data downstream

❖ Data fetching thread

❖ Communicating to electronics

❖ Fetching and packing data

❖ 1ms sleep or no sleep

Fetching thread
Best effort

Main thread
1 kHz

Data buffer
std::deque

Data fetcher
❖ Support some digitizers

❖ CAEN digitizers

❖ 1740 DPP-QDC FW

❖ 1730, 1725 DPP-PSD and DPP-PHA FW

❖ Variations of above

❖ Mesytec

❖ MADC-32

Fetching thread
Best effort

Main thread
1 kHz

Data buffer
std::deque

Data monitor

❖ Using ROOT THttpServer

❖ Sometimes, using JSROOT for special layout

❖ Making thread pool and process data

❖ TH2Poly::Fill is very heavy

❖ A single thread can not process more than 1
M Hz data, need a trick. TH1 is thread-safe

❖ Calculating the counting rate and uploading to
a DB for Grafana

Data recorder
❖ Writing data into ROOT format

❖ Sometimes, this is a bottleneck

❖ If using compression

❖ Sorting by timestamp

❖ std::vector

❖ TBB is slow with GCC 14.2.1,
Core i7-11700

1GB data
writing With

Compression
Without

Compression Simple binary

Time duration/
Speed

SATA SSD

< 12 s
< 90 MB/s

< 2 s
< 500 MB/s

< 2 s
< 500 MB/s

Time duration/
Speed

MV2 SSD

< 11 s
< 90 MB/s

< 0.7 s
< 1500 MB/s

< 0.7 s
< 1500 MB/s

1 10 210 310 410 510 610 710 810Number of events

310

410

510

610

710

810

910

1010

[n
s]

STD

Single thread
16 threads (OMP):

__gnu_parallel::sort
16 threads (TBB):

std::sort(std::execution::par

Other software modules

❖ Web API

❖ Event Builder

Web API and controller UI
❖ Web API server

❖ Oat++

❖ https://oatpp.io/

❖ Controlling the data acquisition process

❖ Recording run information

❖ Controller

❖ Communicating with the API server

❖ Not so rich now

https://oatpp.io/

Event Builder
❖ All events are sorted and stored simple TTree by timestamp

❖ Triggerless mode, also with VETO or trigger

❖ The user specifications

❖ Event trigger detectors

❖ Flexible condition settings NYI

❖ Anti Coincidence setting

❖ Time window

❖ Only offline

❖ If we can have a good computational resource, I will implement the online version

Performance
❖ Trigger rate, data transfer speed (One event 26B, can be 14B)

❖ Simple setup: < 18 MHz, 480 MB/s

❖ Realistic setup: < 4 MHz, 100 MB/s

❖ Now sending data by DAQ-Middleware (CORBA)

❖ Synchronization of all components by middleware

❖ Sometimes, one component waits for others

❖ Direct connecting (WebSocket): > 40 MHz, 1 GB/s/client

❖ Disk speed and network speed can be a bottleneck

Data
fetcher

Data
monitor

Data
recorder

Data
fetcher

Data
monitor

Data
recorder

Data
fetcher

Data
Hub

User cases
❖ ELIADE detector

❖ 8 HPGe Clover detectors
(SEG32 type) and 4 CeBr

❖ 8 + 1 Computers

❖ 34 CAEN digitizers V1725, V1730

❖ More than 300 channels

One computer (Big data size)

Data
fetcher

Data
monitor

Data
recorder

Data
Hub

One
computer
(Not big)

Data
fetcher

Data
monitor

Data
recorder

Data
Hub

Controller computer

One
computer
(Not big)

Data
fetcher

Can be replaced

User cases
❖ ELIGANT detector

❖ 34 LaBr and CeBr
detectors for γ

❖ 62 Liquid scintillator and
Li glass detectors

❖ 2 DSSD Si detectors

❖ 1 computer

❖ Relatively simple

User cases
❖ 3MV and 9MV Tandem beamlines at IFIN-HH, Romania

❖ Publications
❖ A. Kuşoğlu et al. Phys. Rev. Lett. 133, 072502
❖ P.A. Soderstrom et al. IL NUOVO CIMENTO 47 C (2024) 58
❖ S. Aogaki et al. NIM A 1056 (2023) 168628
❖ R. Roy et al. EPJ Web of Conferences 297, 02007 (2024)
❖ And more

Conclusion

❖ Pros

❖ Fitting for many experiments

❖ Well running with not-so-big data size or not necessary to merge data
during an experiment

❖ Controlling several electronics

❖ ROOT format is good for researchers, most probably…

Conclusion

❖ Cons

❖ DAQ-Middleware documents are mainly written in Japanese

❖ My colleagues are mainly Romanian, European

Future plans

❖ Rewrite the CAEN digitizer controller class of the data fetcher

❖ CAEN provides better libraries now

❖ Test application running well with 60Co source

❖ Implementing better GUI

❖ Replace DAQ-Middleware with our own framework

❖ The designing and planning stage now

Acknowledgments
❖ Supported by

❖ The Romanian Ministry of Research, Innovation and Digitalization under
contract 10N/PN 23 21 01 06

❖ The ELI-RO program funded by the Institute of Atomic Physics, Măgurele,
Romania, contract number ELI-RO/RDI/2024_002 and ELI-RO/RDI/
2024_004

❖ And users

Codes on GitHub

❖ https://github.com/ELI-NP/DELILA

❖ https://github.com/aogaki/DELILA-WebAPI

❖ https://github.com/aogaki/DELILA-Controller

❖ https://github.com/aogaki/DELILA-Event

❖ Oat++ and DAQ-Middleware are also there

https://github.com/ELI-NP/DELILA
https://github.com/aogaki/DELILA-WebAPI
https://github.com/aogaki/DELILA-Controller
https://github.com/aogaki/DELILA-Event

DAQ group, GDED, ELI-NP

Thank you for your attention

