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ELI-NP
❖ Extreme Light Infrastructure - Nuclear Physics

❖ Laser and γ-ray beams facility for Nuclear Physics

❖ Laser beamlines are operated

❖ γ will be operated soon

❖ Magurele (near Bucharest), Romania

❖ Magurele is a kind of researchers’ town, science town

❖ Also ELI-ALPS (Hungary) and ELI-Beamlines (Czech)
Google Maps



VEGA

❖ Variable Energy Gamma System at ELI-NP

❖ Up to 19.5 MeV γ-ray beam

❖ Total photon flux 1.0 × 1011/s

❖ Under construction

❖ Full operation 2026



Requirements for DAQ
❖ Support some electronic modules

❖ CAEN digitizers (1725, 1730, 1740), Mesytec ADC TDC

❖ We can add any electronics if we can fetch data by C/C++

❖ e.g. temperature sensor

❖ Open source

❖ We do not want to wait for the update when we need

❖ Network transparency

❖ Controlling some computers from a remote

❖ Using the same clock source at different electronics



DELILA
❖ Digital ELI-NP List-mode Acquisition system

❖ Using DAQ-Middleware

❖ https://daqmw.kek.jp/

❖ Component base system

❖ Easy porting

❖ Based on a robotics technology (RT) !! NOT Real Time

❖ Using ROOT library

❖ https://root.cern/

❖ Monitoring and Recording

❖ JSROOT is awesome! But no nice fitting functions now

❖ Almost all parts are written in C++.  The web interface is TypeScript with Angular



Components
❖ Components are started by xinetd or systemd

❖ Basic components

❖ Data fetcher

❖ Recorder

❖ Monitor

❖ Operator component
Data 

fetcher

Data 
monitor

Data 
recorder

Operator Web API

←: Commands
←: DataDELILA



Data fetcher
❖ Two threads

❖ Main thread

❖ Called by the operator component every 1ms

❖ Check whether data is available or not

❖ Sending the data downstream

❖ Data fetching thread

❖ Communicating to electronics

❖ Fetching and packing data

❖ 1ms sleep or no sleep

Fetching thread
Best effort

Main thread
1 kHz

Data buffer
std::deque



Data fetcher
❖ Support some digitizers

❖ CAEN digitizers

❖ 1740 DPP-QDC FW

❖ 1730, 1725 DPP-PSD and DPP-PHA FW

❖ Variations of above

❖ Mesytec

❖ MADC-32

Fetching thread
Best effort

Main thread
1 kHz

Data buffer
std::deque



Data monitor

❖ Using ROOT THttpServer

❖ Sometimes, using JSROOT for special layout

❖ Making thread pool and process data

❖ TH2Poly::Fill is very heavy

❖ A single thread can not process more than 1 
M Hz data, need a trick.  TH1 is thread-safe

❖ Calculating the counting rate and uploading to 
a DB for Grafana



Data recorder
❖ Writing data into ROOT format

❖ Sometimes, this is a bottleneck

❖ If using compression

❖ Sorting by timestamp

❖ std::vector

❖ TBB is slow with GCC 14.2.1, 
Core i7-11700

1GB data 
writing With 

Compression
Without 

Compression Simple binary

Time duration/
Speed
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< 12 s
< 90 MB/s

< 2 s
< 500 MB/s

< 2 s
< 500 MB/s
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Speed

MV2 SSD

< 11 s
< 90 MB/s

< 0.7 s
< 1500 MB/s

< 0.7 s
< 1500 MB/s
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Single thread
16 threads (OMP): 

__gnu_parallel::sort
16 threads (TBB): 

std::sort(std::execution::par



Other software modules

❖ Web API

❖ Event Builder



Web API and controller UI
❖ Web API server

❖ Oat++

❖ https://oatpp.io/

❖ Controlling the data acquisition process

❖ Recording run information

❖ Controller

❖ Communicating with the API server

❖ Not so rich now

https://oatpp.io/


Event Builder
❖ All events are sorted and stored simple TTree by timestamp

❖ Triggerless mode, also with VETO or trigger

❖ The user specifications

❖ Event trigger detectors

❖ Flexible condition settings NYI

❖ Anti Coincidence setting

❖ Time window

❖ Only offline

❖ If we can have a good computational resource, I will implement the online version



Performance
❖ Trigger rate, data transfer speed (One event 26B, can be 14B)

❖ Simple setup: < 18 MHz, 480 MB/s

❖ Realistic setup: < 4 MHz, 100 MB/s

❖ Now sending data by DAQ-Middleware (CORBA)

❖ Synchronization of all components by middleware

❖ Sometimes, one component waits for others

❖ Direct connecting (WebSocket): > 40 MHz, 1 GB/s/client

❖ Disk speed and network speed can be a bottleneck
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User cases
❖ ELIADE detector

❖ 8 HPGe Clover detectors    
(SEG32 type) and 4 CeBr

❖ 8 + 1 Computers

❖ 34 CAEN digitizers V1725, V1730

❖ More than 300 channels

One computer (Big data size)

Data 
fetcher

Data 
monitor

Data 
recorder

Data 
Hub

One 
computer 
(Not big)
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Can be replaced



User cases
❖ ELIGANT detector

❖ 34 LaBr and CeBr 
detectors for γ

❖ 62 Liquid scintillator and 
Li glass detectors

❖ 2 DSSD Si detectors

❖ 1 computer

❖ Relatively simple



User cases
❖ 3MV and 9MV Tandem beamlines at IFIN-HH, Romania

❖ Publications
❖ A. Kuşoğlu et al. Phys. Rev. Lett. 133, 072502 
❖ P.A. Soderstrom et al. IL NUOVO CIMENTO 47 C (2024) 58 
❖ S. Aogaki et al. NIM A 1056 (2023) 168628 
❖ R. Roy et al. EPJ Web of Conferences 297, 02007 (2024) 
❖ And more



Conclusion

❖ Pros

❖ Fitting for many experiments

❖ Well running with not-so-big data size or not necessary to merge data 
during an experiment

❖ Controlling several electronics

❖ ROOT format is good for researchers, most probably…



Conclusion

❖ Cons

❖ DAQ-Middleware documents are mainly written in Japanese

❖ My colleagues are mainly Romanian, European



Future plans

❖ Rewrite the CAEN digitizer controller class of the data fetcher

❖ CAEN provides better libraries now

❖ Test application running well with 60Co source

❖ Implementing better GUI

❖ Replace DAQ-Middleware with our own framework

❖ The designing and planning stage now
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Codes on GitHub

❖ https://github.com/ELI-NP/DELILA

❖ https://github.com/aogaki/DELILA-WebAPI

❖ https://github.com/aogaki/DELILA-Controller

❖ https://github.com/aogaki/DELILA-Event

❖ Oat++ and DAQ-Middleware are also there

https://github.com/ELI-NP/DELILA
https://github.com/aogaki/DELILA-WebAPI
https://github.com/aogaki/DELILA-Controller
https://github.com/aogaki/DELILA-Event
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