
Performance of the ATLAS GNN4ITk Particle Track
Reconstruction GPU pipeline

Aleksandra Poreba CERN/Heidelberg University) on behalf of the ATLAS Collaboration
CHEP 2024, aleksandra.poreba@cern.ch

References:
1 ATLAS ITk Track Reconstruction with a GNN-based pipeline ATLAS Collaboration
2 Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain H. Torres
3 Structured Pruning of Deep Convolutional Neural Networks S. Anwar, K. Hwang , W. Sung
4 Saliency Pruner https://github.com/pytorch/pytorch/tree/main/torch/ao/pruning/_experimental/pruner
5 https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and
Research (grant no. 13E18CHA Poster theme based on a template from Slidesgo

INFERENCE TIME

Particle track reconstruction is one of the most crucial and the time consuming steps of the event
reconstruction in particle detectors.

For High Luminosity LHC, the pileup will increase and the track reconstruction in the ATLAS
experiment will be more computationally expensive. At the same time, it needs to fit in the online

trigger restrictions of 1 s for processing an event.

One of the considered approaches to accelerate particle track reconstruction in ATLAS is the usage
of machine learning, i. e. the GNN4ITk project 1] proposing Interaction Graph Neural Network.

To even further improve the performance of the framework for a future use at the
software trigger Event Filter), different accelerators are proposed: GPU (focus of this

poster) and FPGA.

FPGA Talk

S. Dittmeier

[Thu, 13:30,

Track 2])

The work presented in this poster focuses on the optimizations
done to the GPU accelerated IGNN considering the memory

consumption and the inference time.

One of the ways to reduce the IGNN inference time would be to reduce
the network size by applying structured pruning 3. It effectively

removes blocks (here rows) of the MLP weight matrix, therefore reduces
the time of the operations.

The default pytorch structural pruning
doesnʼt remove the rows, just sets the values
to 0. The experimental Saliency Pruner 4] in
pytorch does densify the weight matrix, but
does not support complicated networks like
this IGNN. Therefore, a multistep approach

has been applied:

The inference time can be improved
by more than two times without

compromising the efficiency.

GNN edge-wise efficiency =
true-positive edges

total true edges

Measured GNN edge-wise efficiency on a IGNN
trained and pruned on a simulated ATLAS events

dataset restricted to ⅛ of the detector 5

Propagate the
edge and node
messages from

the previous step

Prepare the input for
the edge encoder with

encoded edge and
input/output nodes

features

Update the edge
features with the

MLP (edge
network)

Prepare the input for
the node encoder with
encoded features of

input and output edges

Update the node
featured with the

MLP (node
network)

Interaction GNN
Message
Passing

i++
yes

no
end of the

forward step

i < 8

With the structured pruning we can maintain the efficiency while significant
gains in the inference time are expected. Full implementation of the
structured pruning within the GNN4ITk framework is in progress.

Expected performance improvement measured on a
standalone model on Nvidia RTX A5000. The shape of the plot

depends on the batch normalization function performance

Train and

prune using

pytorch
structural

pruning with

l2 norm

Transform
each MLP

separately into
dense

structure using
Saliency
Pruner

After the graph construction and initial filtering, the IGNN is used to score the edges based on their geometric
properties (features) populated via message passing. Labelled edges are used to classify nodes as part of the track.

MEMORY CONSUMPTION

However, the evaluation of the network
scoring the edges doesnʼt have to be done

for all the graph edges at the same time - it is
independent for each edge. The operation

can be split into substeps executed
sequentially of defined size, that would fit

into a chosen GPU.

The input to the IGNN is an event represented as a graph, with node and edge
features describing the geometric properties of hits (nodes), for example (x, y, z)

position and track candidates (edges).

The size of the input graph determines the memory consumption of the GNN
inference - an average graph has 1.95M edges and 316 k nodes 2. However,
during data-taking we must be able to reconstruct even the busiest events that

can reach up to 3.7M edges 2] and requiring over 32 GiB to process.

The high memory consumption is caused by the inputs to the IGNN steps that
contain 12 features of the track edges encoded in the latent space of size D

(by default D128.

Substepping mechanism allows to reduce the memory consumption
of the IGNN inference and therefore use GPUs with less memory

available. The track reconstruction efficiency is not affected.

The substepping also improves the inference time by 20% due to
the performance scaling of pytorch concatenation operator.

substep 1 substep 2

neural_network(substep1
neural_network(substep2

…

…

Memory snapshot with
and without substepping9 GiB

5.5 GiB

Preallocated data structure to collect the results

Big data structure processed
in substeps

400 ms per
event

900 ms per
eventll

80%
pruning

https://github.com/pytorch/pytorch/tree/main/torch/ao/pruning/_experimental/pruner
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

