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INFERENCE TIME

Particle track reconstruction is one of the most crucial and the time consuming steps of the event 
reconstruction in particle detectors.  

For High Luminosity LHC, the pileup will increase and the track reconstruction in the ATLAS 
experiment will be more computationally expensive. At the same time, it needs to fit in the online 

trigger restrictions of 1 s for processing an event.

One of the considered approaches to accelerate particle track reconstruction in ATLAS is the usage 
of machine learning, i. e. the GNN4ITk project 1] proposing Interaction Graph Neural Network.

To even further improve the performance of the framework for a future use at the 
software trigger Event Filter), different accelerators are proposed: GPU (focus of this 

poster) and FPGA.
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The work presented in this poster focuses on the optimizations 
done to the GPU accelerated IGNN considering the memory 

consumption and the inference time.

One of the ways to reduce the IGNN inference time would be to reduce 
the network size by applying structured pruning 3. It effectively 

removes blocks (here rows) of the MLP weight matrix, therefore reduces 
the time of the operations.

The default pytorch structural pruning 
doesnʼt remove the rows, just sets the values 
to 0. The experimental Saliency Pruner 4] in 
pytorch does densify the weight matrix, but 
does not support complicated networks like 
this IGNN. Therefore, a multistep approach 

has been applied:

The inference time can be improved 
by more than two times without 

compromising the efficiency.

GNN edge-wise efficiency =
true-positive edges

total true edges

Measured GNN edge-wise efficiency on a IGNN 
trained and pruned on a simulated ATLAS events 

dataset restricted to ⅛ of the detector 5
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With the structured pruning we can maintain the efficiency while significant 
gains in the inference time are expected. Full implementation of the 
structured pruning within the GNN4ITk framework is in progress.

Expected performance improvement measured on a 
standalone model on Nvidia RTX A5000. The shape of the plot 

depends on the batch normalization function performance  
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After the graph construction and initial filtering, the IGNN is used to score the edges based on their geometric 
properties (features) populated via message passing. Labelled edges are used to classify nodes as part of the track.

MEMORY CONSUMPTION

However, the evaluation of the network 
scoring the edges doesnʼt have to be done 

for all the graph edges at the same time - it is 
independent for each edge. The operation 

can be split into substeps executed 
sequentially of defined size, that would fit 

into a chosen GPU.

The input to the IGNN is an event represented as a graph, with node and edge 
features describing the geometric properties of hits (nodes), for example (x, y, z) 

position and track candidates (edges). 

The size of the input graph determines the memory consumption of the GNN 
inference - an average graph has 1.95M edges and 316 k nodes 2.  However, 
during data-taking we must be able to reconstruct even the busiest events that 

can reach up to 3.7M edges 2] and requiring over 32 GiB to process.

The high memory consumption is caused by the inputs to the IGNN steps that 
contain 12 features of the track edges encoded in the latent space of size D 

(by default D128. 

Substepping mechanism allows to reduce the memory consumption 
of the IGNN inference and therefore use GPUs with less memory 

available. The track reconstruction efficiency is not affected.

The substepping also improves the inference time by 20% due to 
the performance scaling of pytorch concatenation operator.
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