<u>Adaptive Hough Transform for Charged</u> Particles Tracking at the LHC Tomasz Bold ⁽¹⁾, Stefan Horodenski ⁽²⁾, Piotr Libucha ⁽¹⁾ stefan.michal.horodenski@cern.ch

1. Adaptive Hough Transform (AHT)

- 'virtual' accumulator, memory is never allocated for the entire image
- Image space in searched in the recursive manner, starting from one cell for the entire parameter space and divided until desired precision is reached
- In first approximation, the memory size is 'size of cell description' × 'number of cells needed to divide image space down to desired size' e.g., when dividing into 4: $4+4+4+4+...+4 = 4 \times N$, N ≈ 13

3. Filtering algorithms in Hough space

AGH

- Counting number of line order changes within the cell, no order change indicates that lines do not intersect \rightarrow no solution within the cell
- Peak finding for a solution candidate, calculate line crossing ulletcoordinates and reject points which are outside $\mu \pm n \cdot \sigma$ range, until none is outside that range, verify compliance with the count threshold
- More accumulator dimensions only mildly add to the memory use
- Recursive implementation replaced with stack [pop cell \rightarrow discard or divide \rightarrow possibly produce solution]
- Transformation equation (φ and r space point polar coordinates in xy plane):

2. Validation with single muon tracking

Transverse momentum in the range from 1 GeV to 10 GeV

Data partitioning - Divide space points into wedges (defined in terms of η and φ), allows for parallel tracking, implemented only for pile-up events

4. Application in high pile-up events

- On average 200 proton-proton interactions in HL-LHC
- η φ space divided into 8 and 15 regions respectively, $|\eta| < 1.1$
- Share of fake solution reduced from 62.2% to 38.2%
- Precision in φ_0 and q/p_T minimizes number of solutions, while maintaining 100% efficiency (0.001 rad and $0.01 GeV^{-1}$, 13 and 8 divisions respectively)
- Cell counts threshold (to further divide accumulator section) 6
- Very high tracking efficiency, precise estimate of φ_0 angle
- On average 10 solutions are found for a single truth particle \rightarrow necessity to incorporate additional filtering phases
- Green picture below the darker the color the deeper in the division level cell is

Maintained very high tracking efficiency for reduced total number of solutions

5. References:

- GitHub project <u>https:/github.com/tboldagh/helix-solver</u>
- Exploration of adaptive Hough algorithm variants for charged particles tracks finding for the ATLAS experiment for the LHC Run 4 – https://cds.cern.ch/record/2912867
- Efficiency as a function of p_T , scatter plot for truth vs Hough φ_0 and

This work is supported by 1 – NCN UMO-2023/51/B/ST2/00920, 2 – NCN 2022/WK/08 MEIN

www.PosterPresentations.co