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Particle Flow

Particle Flow (PF) [1] is a global event reconstruction algo‐
rithm which combines information from all CMS subdetec‐
tors to produce a set of final‐state particle candidates for
each collision event. Inputs for the PF algorithm include re‐
constructed hits (rechits) from electromagnetic & hadronic
calorimeters, used to produce PF clusters; and tracks from
the silicon tracker and muon systems to produce PF tracks.
These elements are linked to form blocks from which the
final‐state particle candidates are produced. The formation
of hadronic PF clusters is one of the most computation‐
ally intensive tasks during PF reconstruction at the High‐
Level Trigger (HLT) [2]. This served as a good candidate for
GPU offloading and the development of a portable algo‐
rithm with Alpaka [3].

Alpaka

The alpaka library is a header‐only C++17 abstraction li‐
brary for accelerator development. This library implements
an abstraction layer that allows one to develop parallel al‐
gorithms with no backend specific considerations. It im‐
plements a hierarchical redundant parallelism model which
is familiar to CUDA developers, and uses a data agnostic
memory model. Alpaka’s functionality is being tested at
CMS in various reconstruction algorithms used at HLT. The
primary goal of porting the reconstruction is to obtain a sin‐
gle maintainable source code that can run on many hard‐
ware architectures and backends with performance close
to the native ones.

HBHE PF Clustering

PF clusters from the hadronic calorimeter barrel and end‐
cap regions (HBHE) are a crucial component of jet recon‐
struction as shown below. These clusters are also used
in reconstructing tau leptons and determining the missing
transverse energy in an event.

Figure 1. Comparisons showing the reconstruction of a jet from PF
with the given transverse momentum (pT ) from simulation.

The clustering algorithm is performed in three stages: seed‐
ing, topological clustering, and the formation of PF clusters.

1. Seeding: Local energy maxima among neighboring PF
rechits are identified as cluster seeds. Seeding
conditions are pulled from a database containing values
for each HCAL channel.

2. Topological clustering: Topologically connected PF
rechits are linked together to form topological clusters,
these can contain multiple seeds where every seed will
become a PF cluster.

Figure 2. (Left) Topologically connected calorimeter hits are associated
to a single cluster. Seeds are shown in red and associated rechit in
blue. Each seed will become a PF cluster. (Right) Illustration of energy
sharing between two clusters.

3. PF clustering: A Gaussian‐mixture model is used to
calculate the energy sharing between hits of a given
topological cluster. Each seed is assigned a Gaussian
energy deposit, and associated rechits contribute a
fraction of their energy based on their distance to the
cluster. In the case of a single seed, the entirety of the
rechit energy is assigned to the cluster.

Porting to Alpaka

Porting HBHE PF clustering to Alpaka was carried out in
multiple stages. Previous work had been done to port the
PF rechit and PF cluster algorithms to CUDA, and parallel
versions of each step were developed. Wemake the follow‐
ing improvements in the port to Alpaka, with an emphasis
on exploiting GPU architecture:

Data is converted to a Structure of Arrays (SOA) format
to take advantage of the parallel architecture of GPUs.
Multiple PF rechits and topological clusters are
processed simultaneously where possible, for example,
the application of energy thresholds to PF rechits and
seeds. Each rechit is assigned to an individual GPU
thread, and all rechits can be checked against the
energy thresholds asynchronously.
We implement a parallel‐optimized connected
component labeling algorithm, ECL‐CC [4], to form the
topological clusters. In the initialization of ECL‐CC, each
”vertex” is labeled by the ID of the first neighbor which
has a smaller ID than the vertex. During computation of
the representatives of the connected components,
”hooking” and ”intermediate pointer jumping” operations
are used and represent the unique implementation of
ECL‐CC.

Figure 3. Example of intermediate pointer jumping

In our implementation we only have vertices up to
degree 8 and rely solely on thread granularity
processing, although ECL‐CC has multiple tiers of
granularity depending on the vertex size. ECL‐CC differs
algorithmically from the initial PF implementation, but
not logically.
The core algorithm for energy sharing between seeds
remains the same, but is divided into separate tiers of
computation and optimized as such. Using tiered
computation we can quickly compute single seed
clusters, and most clusters can utilize performance
improvements from GPU shared memory accesses and
parallel processing of rechits. Depending on the size,
large topological clusters will use either shared or global
memory accesses, and process rechits iteratively.
Runtime allocation of the PF rechit fraction SoA is used
to minimize the memory usage of the clustering
algorithm and provide flexibility to cover rare events
containing a very high number of rechit fractions.

Performance Results

We validate the physics performance from analyzing cluster
properties, and test the event throughput at HLT by switch‐
ing to the Alpaka version of PF clustering:

Figure 4. Comparisons of reconstructed HBHE PF cluster energies
with Legacy CPU and Alpaka GPU clustering algorithms as measured
in Run 3 2024 data. Energy discrepancies greater than 1% occur only
in 0.00001% of HBHE PF clusters.

Figure 5. The event throughput of a CMS HLT configuration employed
during the 2024 data‐taking period. Each measurement runs the
configuration on 40,000 events of proton‐proton collision data from
2024 at an average pileup of 62.5. The blue points represent the
event throughput achieved by executing the HLT with all the available
heterogeneous modules on GPU. In contrast, the magenta ones
depicts the event throughput when using the Alpaka‐CPU version of
PFRechit and PFCluster. The green points showcase the event
throughput when utilizing the legacy version of PFRechit and
PFCluster on CPU. Notably, the plot demonstrates a 2.5% speedup in
HLT performance when utilizing 8 jobs with 32 threads each (standard
data‐taking HLT settings).
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