
Architecture

The GPU approach uses a block and thread approach, spawning
multiple workers for sets of candidates, banks, and events.
The FPGA approach is a pipelined distributed design:
● A single kernel accesses the host memory buffer contiguously

and decodes banks and candidates.
● Two kernels, one for banks and one for candidates, distribute

the results of the first kernel to the workers.
● Each worker applies the clustering algorithm to a specific

bank, since they are independent.
● Clusters are then collected by another kernel that forwards

them to the writer kernel, which writes the results back to the
host memory.

A synchronization kernel is in charge of synchronizing the whole
chain, keeping track of event boundaries to avoid corruption.

Algorithm
The current pixel clustering algorithm4 of the VeLo detector
was chosen for the evaluation of the toolkit.
Active pixels coming from the frontend are grouped in 208
banks corresponding to different independent parts of the
detector.
The clustering algorithm starts from an active pixel (candidate)
and looks for adjacent active pixels, updating cluster size and
weighted averaged coordinates when it finds one.
When there are no remaining adjacent active pixels, the
definitive cluster information is returned.

Porting the algorithm to the FPGA didn’t require major modifications. The first
proof of concept was running on the FPGA in less than a month.
However, the FPGA design required rethinking the architecture of the kernel with
respect to the GPU one to fully utilize the computing power available.
Host memory accesses required specific design choices both in the kernel and in
the host software to reach the advertised PCIe throughput (single pointer access,
contiguous data).
Since this algorithm is compute intensive, the multiple workers approach was the
most performant.
Benchmarks were run on a Bittware IA-840F FPGA Accelerator Card, an NVidia RTX
A5000 GPU, and an AMD Epyc 7502 CPU.

Results

Evaluating FPGA Acceleration with Intel® oneAPI Toolkit
for High-Speed Data Processing
Alberto Perro1,2, Paolo Durante1, Flavio Pisani1, Eleni Xochelli1,3

27th CHEP - 19-25 October 2024 - Krakow, Poland

References and Acknowledgements
1. LHCb Collaboration, “LHCb Trigger and Online Upgrade Technical Design Report.” 2014. https://cds.cern.ch/record/1701361.
2. Aaij, R. et al. 2020. “Allen: A High-Level Trigger on GPUs for LHCb.” Computing and Software for Big Science 4 (1): 7.

https://doi.org/10.1007/s41781-020-00039-7.
3. “oneAPI: A New Era of Heterogeneous Computing.” Intel. Accessed September 16, 2024.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html.
4. Campora Perez, Daniel Hugo. 2019. “Optimization of High-Throughput Real-Time Processes in Physics Reconstruction.” Seville

U. https://cds.cern.ch/record/2718278.
Special thanks to Christian Färber from Altera for the support.

1 CERN, 2 Aix-Marseille Université, 3 University of Thessaly

Context
Intel OneAPI FPGA Toolkit3 offers an GPU-like programming framework to
develop FPGA-accelerated workloads:

- Data Parallel C++ language with SYCL3 cross-platform abstraction layer

- Emulator compatible with software debugging tools (e.g. GDB)

- High level FPGA integration through a multi-architecture binary

The LHCb Experiment uses GPU cards in its high level trigger system to
efficiently handle a data rate of 32 Tb/s from the detector.1,2

Some trigger tasks, such as decoding, are better suited for FPGAs due to their
ability to handle bitwise and combinatorial operations.
However, FPGAs are more difficult to program using standard Hardware
Description Languages (HDLs) compared to CPUs and GPUs.

* the FPGA optimized benchmark does not include the writing back to host memory due to a stability issue with the Board Support Package

Corresponding Author: alberto.perro@cern.ch

https://cds.cern.ch/record/1701361
https://doi.org/10.1007/s41781-020-00039-7
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://cds.cern.ch/record/2718278

