Advancements in Computing and Simulation Techniques for the HIBEAM-NNBAR Experiment

Bernhard Meirose (on behalf of the HIBEAM-NNBAR Collaboration)

UNIVERSITY OF TECHNOLOGY

What is this talk about?

• A future baryon number violation experiment in Sweden using neutrons

Motivation in one minute

- Baryon number violation (BNV) essential condition for baryogenesis
- Baryon number an accidental SM symmetry and is broken in extensions
- BNV in SUSY, dark matter (hidden sector), extra dimensions
- Neutron oscillations to antineutrons or sterile neutrons unique probe of BNV processes in which only BN is violated
- An opportunity to test a global symmetry with three orders of magnitude better precision than previously done is rare

Free NNBAR search in 1 minute

- Goal: observe neutron \rightarrow antineutron ($n \rightarrow \bar{n}$)
- Sensitivity 3 orders of magnitude greater than previous experiment
- Strategy: let as many cold neutrons "fly" for as long as possible
- Probability of free neutron transformation into an antineutron:

 $P(\overline{n},t) = (t/\tau)^2$ $FOM = Nt^2$

t \rightarrow neutron flight time; $\tau \rightarrow$ "oscillation time" (BSM predicted, model dependent)

Bernhard Meirose - CHEP2024, October 23 2024 4

European Spallation Source (ESS)

- Will be most powerful spallation neutron source
- Place: Lund, Sweden
- Under construction: Beam on target in 2025, start of user program in 2027.

HIBEAM and NNBAR

- Staged experiment
- 1. HIBEAM (High Intensity Baryon Extraction and Measurement)
	- late 2020's
	- world leading searches $n \rightarrow n'$
	- search for $n \rightarrow \bar{n}$
	- also search for $n \rightarrow \bar{n}$ via sterile neutrons. *First such search*.
	- search for axions-like particles
	- R&D for full experiment.
- 2. NNBAR
	- extremely high precision searches $n \rightarrow \bar{n}$
	- improve sensitivity to oscillation probability by $\sim 10^3$
	- After 2030

HIBEAM (top) and NNBAR (bottom) detectors

the detector

Aluminum tube

Target

Requirements for the detector:

- Reconstruction of multi-pion final state
- Invariant mass reconstruction
- Particle identification
- Timing sensitivity to reject cosmics and other out-of-time backgrounds

Status of the Design of an Annihilation Detector to Observe Neutron-**Antineutron Conversions at the European Spallation Source**

by Sze-Chun Yiu ^{1,*} [□], Bernhard Meirose ^{1,2,*} [□], Joshua Barrow ^{3,4} [□], Christian Bohm ¹ [□], Gustaaf Brooijmans ⁵ \boxtimes , Katherine Dunne ¹ \boxtimes ⁰, Elena S. Golubeva ⁶ \boxtimes , David Milstead ¹ \boxtimes , André Nepomuceno 7 \boxdot **.** Anders Oskarsson ^{2 \boxdot} Valentina Santoro 2.8 \boxdot and Samuel Silverstein 1 \boxdot **0**

Event displays in Geant4

Figure 4. Event displays with the NNBAR detector showing (a) a signal event with five pions (b) a cosmic muon.

Status of the Design of an Annihilation Detector to Observe Neutron-Antineutron Conversions at the European Spallation Source

by Sze-Chun Yiu ^{1,*} ^{to}, Bernhard Meirose ^{1,2,*} ^{to}, Joshua Barrow ^{3,4} ^{to}, Christian Bohm ¹ ^{to}, Gustaaf Brooijmans ⁵ ^{\boxdot}, Katherine Dunne ^{1 \boxdot} \bullet , Elena S. Golubeva ⁶ \boxdot , David Milstead ^{1 \boxdot}, André Nepomuceno $7 \boxtimes 9$, Anders Oskarsson $2 \boxtimes$, Valentina Santoro $2.8 \boxtimes 9$ and Samuel Silverstein $1 \boxtimes 9$

WASA detector (HIBEAM)

HIBEAM Prototypes

- S. Silverstein (Stockholm University) M. Wolke (Uppsala University)
	- A. Oskarsson (Lund University)
		- B. Rataj (Lund University)
			- E. Kemp (UNICAMP)
			- A. Kozela (IFJ PAN)
			- K. Pysz (IFJ PAN)
				- M. Holl (ESS)
			- T. Quirino (UERJ)
			- J. Amaral (UERJ)

HRD prototype

LEC prototype

24 CsI(Tl) crystals equipped with PMTs

Readout

Table 1: Estimated channel numbers and readout parameters for the HIBEAM subdetectors

- HRD, LEC and veto have "fast" channels (~ns level) timing information critical for s/b.
- TPC track information arrives later and must be matched to hits recorded in the calorimeters.
- Initial event candidate identification based on calorimeter and veto data.
- Separate TPC readout in parallel with the other subdetectors
- PANDA self-triggered DAQ readout system is suitable for HIBEAM.
- The PANDA DAQ is a good paradigm for HIBEAM
- Also exploits existing investment within the collaborating institutes

Expected rates

Table 4: Simulated cosmic ray background flux at the detector using CRY. The data is sorted by ranges of kinetic energy (KE) and shown for various particle types.

Cosmic Ray Background Particle Flux $(m^{-2}s^{-1})$					
KE(GeV)	Muon	Electron	Proton	Neutron	Gamma
$0 - 0.5$	20.9	48.7	2.49	52.2	292
$0.5 - 1$	23.7	1.26	0.570	1.72	1.44
$1-5$	94.2	0.68	0.448	0.855	0.552
$5 - 10$	32.1	0.25	0.0202	0.0196	0.0139
$10-50$	25.3	0.0	0.0121	0.0105	0.00204
>50	2.26	0.0	0.00810	0.000631	0.000150

Table 5: The expected number of incoming cosmic particles in 3 years of running time using CRY. The data are split into different ranges of kinetic energy (KE) and shown for various particle types.

Computing in HIBEAM-NNBAR

- As a "in development" stage experiment, computing and simulations are core activities.
- Simulations play a role in defining technologies and experimental design since ultimate decision is an interplay between cost and performance.
- **Future:** Fast simulation development to use prototype-informed resolutions and efficiencies due to the impracticality of generating enough Monte Carlo events for three years of data.

Simulation Framework

HIBEAM-NNBAR Simulation Framework

Fast Simulation in Geant4

A. Nepomuceno (UFF)

Goal: to develop a Geant4 application to perform fast simulation of a given NNBAR detector model.

The parametrization must accounts for physical effects, the detector performance and the reconstruction procedure.

Fast Simulation – Two Approaches

Two Approaches have been developed:

- ●
● "Generic" Detector : the energy is smeared with a Gaussian distribution whose standard deviation are the resolutions of known HEP detectors, but using the NNBAR geometry.
- NNBAR Detector: the energy is smeared according to a model derived from the full simulation. Single particles events of specific energies are simulates in details and response model is derived.

Both approaches use the same simplified geometry (only lead glass and scintillators for the time been).

Fast Simulation – Generic Detector

A. Nepomuceno (UFF)

Model resolution for the Lead Glass Calorimeter

Model based on test beam data from

- 1. M P Budiansky *et al* NIMA 199 (1982) 453-460)
- 2. BB Bradson *et al* NIMA A 332 (1993) 419-443
- 3. The PHENIX Collaboration, NIMA A 499 (2003) 521-536

Bernhard Meirose - CHEP2024, October 23 2024 24

Fast Simulation – NNBAR Lead Glass

The Gaussian used for smearing in each event is randomly selected based on a probability derived from the full simulation.

Bernhard Meirose - CHEP2024, October 23 2024 25

Machine Learning

Particle identification

Particle identification

Event selection with ML

- HIBEAM-NNBAR focus on rare even searches
- Requires zero background
- Strategy different from usual "optimize S/B"
- Attention to overtraining
- Final result important but equally: what can be learned?

Correlations

- 49 detector variables (6 groups)
- Decrease used variables: $49 \rightarrow 18$
- Example of variables: number of pions, invariant mass, sphericity, transversal energy of the lead glass modules, time difference between the first activation in the top and bottom scintillator staves/lead-glass modules, etc.

ML event selection in HIBEAM

What can we learn?

- **SHAP (SHapley Additive** exPlanations) explains individual model predictions by calculating each attribute's contribution.
- It is based on Shapley Values, which fairly distribute contributions among team members in cooperative games.
- SHAP ensures a fair assessment of each attribute's impact on the model's prediction.

 -0.2 -0.1 0.0 0.1 0.2 SHAP value (impact on model output)

J. Amaral (UERJ)

Summary and outlook

- BNV is expected in Nature.
- HIBEAM/NNBAR active experimental program for the ESS.
- Addresses BNV ($\Delta B = 1$ and $\Delta B = 2$)!
- HIBEAM world leading sterile neutron searches + pilot free $n \rightarrow \bar{n}$ search.
- NNBAR world leading neutron-antineutron oscillation searches.
- HIBEAM-NNBAR computing program diverse, with simulation and computing guiding efforts on many fronts, from data analysis to hardware simulations.

TPC prototype simulation

•Simulating TPC prototype in Garfield++ to study electron cloud arrival at readout pads.

•Zig-zag pad geometry optimization aims to improve resolution.

•Simulation combines Matlab (interface), COMSOL (mesh, electric field), and Garfield++ (electron cloud behavior).

•Electron cloud dispersion is 0.12 mm; Optuna optimizes pad geometry.

•Optimized zig-zag pads reduce mean absolute error from 0.95 mm to 0.45 mm.

Bernhard Meirose - CHEP2024, October 23 2024

COMSOL Garfield++ Electron Clouds in the readout Geometric parameters Applied Voltages Material properties Matlab

34

J. Amaral (UERJ)

TPC prototype simulation

J. Amaral (UERJ)

Function to optimize: Mean Absolute error and the percentagem of electrons that reach the readout pads.

Bernhard Meirose - CHEP2024, October 23 2024

<u> WWW.WWWWWW</u>

 -2

Prototype simulations

Dziękuję!

UNIVERSITY OF TECHNOLOGY

Vetenskapsrådet

STINT Stiftelsen för internationalisering av högre utbildning och forskning

The Swedish Foundation for International Cooperation in Research and Higher Education

Readout simulations

T. Quirino (UERJ)

- Simulator models signal post-modifications by sensors, amplifiers, and circuits.
- Includes electronic noise from measurement interference.
- Each energy deposit creates a discrete pulse with amplitude and ADC duration.
- Event intervals are based on GEANT simulations and a probability distribution.

Hadronic Range Detector (HRD) Signal Simulation

Why Baryon Number Violation?

Baryon number in the SM

- Even within the SM, B is subject only to approximate conservation law.
- In fact only B-L is exactly conserved.
- BNV exists in the SM baryon due to nonperturbative effects (t'Hooft [Phys. Rev. Lett. 37 (1976) 8]].
- Baryon number can be violated by triangle anomaly, where left handed quarks annihilate with leptons.

● **1. Tiny effects imply that the minimal Standard Model already has B violation.**

 M_{NBSAR}

● **2. However: SM B violation too small to produce observed baryon asymmetry!**

Precision tests of the equivalence principle

- Electromagnetic gauge invariance leads to electric charge conservation \rightarrow true local symmetry with associated gauge boson (photon).
- Baryon number is only global symmetry \rightarrow no associated mediator.
- Precision tests of equivalence principle offer **no evidence for a long range force coupled to baryon number.**

Test of the Equivalence Principle Using a Rotating Torsion Balance

S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger Phys. Rev. Lett. **100**, 041101 - Published 28 January 2008

Meaning:

Suppose there is a small Coulomb-like force coupling to B=number of protons+neutrons in a nucleus.

Different chemical elements would fall at a different rate because the B per kilogram is a bit different due to the binding energies.

Key (missing!) requirement for hypothetical local gauge symmetry forbidding BNV.

Sakharov conditions for baryogenesis

- Baryogenesis: hypothetical physical process that took place in the early Universe responsible for baryon asymmetry.
- Necessary ingredients needed to create a baryon asymmetry:
- **1. Baryon number violation (BNV)**
- **2. Loss of thermal equilibrium**
- **3. C, CP violation**
- These principles have come to be attributed to Sakharov (JETP Lett. 5 1967).

Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe

A.D. Sakharov

(Submitted 23 September 1966) Pis'ma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967) [JETP Lett. 5, 24-27 (1967). Also S7, pp. 85-88]

Sakharov conditions for baryogenesis

- Baryogenesis: hypothetical physical process that took place in the early Universe responsible for baryon asymmetry.
- Necessary ingredients needed to create a baryon asymmetry:
- **1. Baryon number violation (BNV)**
- **2. Loss of thermal equilibrium**
- **3. C, CP violation**
- These principles have come to be attributed to Sakharov (JETP Lett. 5 1967).

A.D. Sakharov

Also \$7, pp. 85-881

(Submitted 23 September 1966)

● **Need for BNV is obvious**.

OF A
20**TH CENTURY**
GIANT

Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe

Pis'ma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967) [JETP Lett. 5, 24-27 (1967).

Testing selection rules

- Neutron oscillations provide **clean channel to probe BNV-only process.**
- From a purely experimental point: test different selection rules for BNV and LNV.

List of backgrounds

- Cosmic rays
- Neutron capture in the annihilation target \rightarrow gammas
- Neutron capture at the neutron guide \rightarrow gammas
- Accelerator skyshine
- Neutron cross-talk from neighboring beamlines
- Free neutron background (if neutrons decay inside tracker)
- *High energy spallation backgrounds*

Invariant mass

$$
W = \sqrt{\left(\sum_i E_i\right)^2 - \left|\sum_i \vec{p_i}\right|^2}
$$

$$
E_n = \sqrt{m_n^2 + p_n^2} \qquad p_n = \sqrt{\text{KE}_n^2 + 2 \cdot \text{KE}_n \cdot m_n}
$$

Sphericity

 $M_{xyz} = \sum_i \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} & p_{xi}p_{zi} \ p_{yi}p_{xi} & p_{yi}^2 & p_{yi}p_{zi} \ p_{zi}p_{xi} & p_{zi}p_{yi} & p_{zi}^2 \end{pmatrix}$ Eigenvalues $\lambda_1, \lambda_2, \lambda_3$
 $\lambda_1 > \lambda_2 > \lambda_3$ $S = \frac{3}{2}(\lambda_2 + \lambda_3)$ signal 10^1 cosmic 10^{-1} 10^{-3} 10^{-5} $\frac{1}{N}$ 10^{-7} 10^{-9} 10^{-11} 10^{-13} 0.2 0.4 0.6 0.0 0.8 1.0 Sphericity

Event selection

Table 6: Survival portion of annihilation signal events, cosmic ray background, and muon after each consecutive cut with globally optimized thresholds.

We reach our goal within the limits of our statistics...

Control of fields in which the neutrons propagate

Eg Free $n \rightarrow \overline{n}$ state

$$
\Psi = \begin{pmatrix} n \\ \bar{n} \end{pmatrix} \qquad H = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\bar{n}} \end{pmatrix}
$$

 ε = mixing mass term

Probability to find an antineutron at time t is given by

$$
P_{n\bar{n}}(t)=\frac{\varepsilon_{n\bar{n}}^2}{(\Delta E/2)^2+\varepsilon_{n\bar{n}}^2}\sin^2\left[t\,\sqrt{(\Delta E/2)^2+\varepsilon_{n\bar{n}}^2}\right]e^{-t/\tau_n},
$$

 $\Delta E = E_{n} E_{\overline{n}}$ Require degeneracy between *n*, \overline{n}

 \Rightarrow Zero magnetic field (<10⁻⁵ G)

```
Similarly for n \rightarrow n'Magnetic field in dark sector
\Rightarrow Scan for -1G <B<+1G in ~mG steps
```
$n \to \bar{n}$ probability via sterile neutron

$$
P_{n\bar{n}}(t) = \frac{1}{4} \alpha_{n\bar{n}'}^2 \alpha_{n\bar{n}'}^2 t^4 \sin^2 \beta = \frac{\sin^2 \beta}{4} \left(\frac{t}{0.1 \text{ s}}\right)^4 \left(\frac{10^2 \text{ s}^2}{\tau_{nn'} \tau_{n\bar{n}'}}\right)^2 \times 10^{-8}
$$

- Magnetic scans for HIBEAM is analogous to magnetic shielding for $NNBAR \rightarrow reach$ quasi-free condition
- For NNBAR, $\Delta E \ll t$ (achieved via B < 10 nT)
- For HIBEAM, that's $|\mathbf{B} \mathbf{B}'| \sim 0$
- B field necessary to compensate B' field to allow $n \rightarrow n' \rightarrow \bar{n}$
- Note: $FOM \sim Nt^4$

Search for neutron oscillations

- Neutrons are bound in nuclei \rightarrow several MeV for liberation
	- \rightarrow fission
	- \rightarrow spallation (can be kept under full control)

Extract of figure from Mads Ry Vogel Jørgensen, Aarhus University

- To increase *probability of* $n \rightarrow \bar{n}$:
- *t* large \rightarrow slow (a.ka. "cold" \rightarrow few meV) need lots of collisions \rightarrow moderators
- We also want as many neutrons as possible.

ESS – a neutron factory

- High intensity spallation source
- 2 GeV protons (3ms long pulse hit rotating tungsten target)
- Cold neutrons after interaction with moderators ($\sim 10^{12-13}$ n/s)

Antineutron annihilation signal

Model of \bar{n} annihilation in experimental searches for \bar{n} transformations

Energy release of \sim 2*mn \sim 1.88 GeV

E. S. Golubeva, J. L. Barrow, and C. G. Ladd Phys. Rev. D 99, 035002 - Published 5 February 2019

- Distributed over several pions (5 in average), e.g.: $n+\bar n\rightarrow \pi^++\pi^-+3\pi^0$
- However: in a real experiment antineutron would annihilate inside a nucleus this is NOT the same as annihilation in free space.
- Neutron is strongly interacting particle 12 C nucleus acts as strong medium

Antineutron annihilation

• Final states extrapolated from antiproton-nucleon:

$\overline{p}C \rightarrow \pi^+$ Spectrum Matches Experiment Well

Antiproton Star Observed in Emulsion*

O. CHAMBERLAIN, W. W. CHUPP, G. GOLDHABER, E. SEGRÈ, AND C. WIEGAND, Radiation Laboratory, Department of Physics. University of California, Berkeley, California

AND

E. AMALDI, G. BARONI, C. CASTAGNOLI, C. FRANZINETTI, AND A. MANFREDINI, Istituto di Fisica della Università, Roma Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy (Received December 16, 1955)

Technology and Material choices

- Target: 100 μm carbon foil
- Tracking: TPC (+ silicon strips inside vacuum tube: multiple scattering)
- H cal: hadronic range detector (HRD)
- EM cal: lead glass calorimeter (LEC)
- Timing: all sub-detectors
- active cosmic veto: scintillating staves + passive shielding: concrete

Bernhard Meirose - CHEP2024, October 23 2024 57

Annihilation target

- Target: 100 μm carbon foil
- Low cross section for absorption

Time Projection Chamber (TPC)

- 3D charged particle tracking: event vertex identification + track matching.
- PID through dE/dX measurements.
- From ALICE TPC: straight track efficiency of 99%, 5% dE/dX resolution.
- 8 rectangular chambers (70 cm deep, 200 cm long, 280 cm wide)
- Gas composition: 80:20 Ar/CO₂ mixture.

Hadronic Range Detector

- Multi-layer calorimeter with plastic scintillator staves \rightarrow active material and absorber
- Identify and measure minimum-ionizing energy deposits from low-energy charged pions traversing the scintillator
- Staves in each layer run perpendicular to those in neighboring layers
- Distinguish between proton and pion tracks by dE/dX.
- Total thickness of 30 cm; 10 layers of scintillating staves (width 6 cm, thickness 3 cm)

Lead Glass Calorimeter (LEC)

- \cdot > 32000 instrumented glass blocks.
- High granularity to cope with flux of gammas from neutron capture.
- measure gammas from neutral pion decays
- + higher-energy charged pions not stopped in HRD.

HIBEAM searches

 $p_1 \to p_2$ possible with a non-zero B-field that must be scanned/optimized to match the B-field in the dark sector

HIBEAM discovery sensitivity

Regeneration

Figure 21. Sensitivity at 95% CL for the discovery of $\tau_{n\to n'}^{\text{dis}}$ (disappearance, 'dis') and $\tau_{n\to n'}^{\text{reg}}$ (regeneration, 'reg') for various detector radii for the nominal 1 MW HIBEAM/ANNI flux at 50 m. A background rate of 1 n s⁻¹ is assumed for the regeneration search. Plots have been smoothed.

Figure 22. Excluded neutron oscillation times in blue for $n \rightarrow n'$ disappearance from UCN experiments [40, 42, 44–47] as a function of the magnetic field \mathbf{B}' . The projected sensitivity for HIBEAM (disappearance mode) is also shown in magenta for 1 year's running at the ESS assuming a power of 1 MW.

Magnetic control beam line

- Full 3D control of the magnetic field will be needed
- \cdot Level of \sim 2 mG.
- Achieved with 3D current coils
- Non-uniformity reduced with mu-metal shielding

Comparison with past and future experiments

Searches for Ultralight Axion Dark Matter in HIBEAM

- HIBEAM can search for ultralight axion dark matter (DM)
- Traditional searches focus on axion DM's coupling to photons, but HIBEAM targets its coupling to neutron spins.
- An axion DM field causes spin-polarized neutrons to precess in response to the DM momentum, an effect measurable using Ramsey's method of separated oscillating fields.
- The precession alters the Larmor precession frequency, providing a detectable signal.
- The HIBEAM search probes ultralight axions with sub-eV masses and improves sensitivity by 2-3 orders of magnitude compared to other lab-based magnetometry searches.
- The axion-neutron coupling is parameterized by fa/CN, where fa is the axion decay constant and CN is a model-dependent constant.
- One year of run time at HIBEAM can yield significant constraints, with astrophysical bounds from supernovae providing additional context.

