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– a high-resolution neutrino detector

● Anti-𝜈e from nuclear reactors
● Solar neutrinos
● Geoneutrinos
● Atmospheric neutrinos
● Supernova neutrinos
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74 institutes in 17 countries/regions
~700 collaborators

See also talk by Xiaomei Zhang
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– a high-resolution neutrino detector

● Anti-𝜈e from nuclear reactors
● Solar neutrinos
● Geoneutrinos
● Atmospheric neutrinos
● Supernova neutrinos

78% photo-coverage:
~17,612k large (20-inch) PMTs
~25,600k small (3-inch) PMTs
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Physics potential:
● Neutrino oscillation properties:

○ Neutrino mass ordering
○ Sub-percent precision for sin2θ12, Δm2

21, and Δm2
31

● Sterile neutrinos
● Neutrino as messengers to study:

○ Earth interior
○ Fusion reactions in Sun
○ Supernova explosions
○ …

● Rare events:
○ Proton decay
○ Dark matter search
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Reactor Anti-𝜈e Spectrum at JUNO

Unoscillated spectrum is also monitored with a satellite detector 
(Taishan Antineutrino Observatory) at 44 m from one of the reactors
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Reactor Anti-𝜈e Spectrum at JUNO

Positions of small wiggles: neutrino mass ordering

~3σ in 6 years

Unoscillated spectrum is also monitored with a satellite detector 
(Taishan Antineutrino Observatory) at 44 m from one of the reactors
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Reactor Anti-𝜈e Spectrum at JUNO

Positions of small wiggles: neutrino mass ordering

Frequency and amplitudes: 
- slow mode: “solar” terms sin2θ12, Δm2

21
- fast mode: “atmospheric” Δm2

31

~3σ in 6 years

<1% precision in 6 yearsUnoscillated spectrum is also monitored with a satellite detector 
(Taishan Antineutrino Observatory) at 44 m from one of the reactors



Novel Fitting Approach Based on a Neural Network for JUNO October 23, 2024 8

Oscillation Analysis in JUNO

1. Predict reactor spectrum at JUNO site : 
S(E) = f𝜈(E) ✕ R-2 ✕ σIBD(E) ✕ Pee(E, L, oscillation parameters)

2. Predict backgrounds
3. Apply detector effects to get reconstructed spectrum (in terms of visible energy of prompt signal)

4. Fit oscillation parameters under NO and IO assumptions

Detection channel: 
Inverse Beta-Decay (IBD)

Prompt signal
handle for neutrino energy: Delayed signal

neutron capture: 2.2 MeV (H) or 
4.9 MeV (12C) within ~200 μs
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Two approaches to predict reconstructed spectrum

Standard Approach
– analytical transformations using a 
parameterized model for detector response [1]. 
The model parameters are based on MC or data*.

● Fast
● More flexible 

(easier to add new parameters)
● May lack some features 

(e.g. non-Gaussian energy resolution and its 
position dependence)

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

 * from Daya Bay and calibration data from JUNO, once available

https://doi.org/10.48550/arXiv.2405.18008
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Standard Approach
– analytical transformations using a 
parameterized model for detector response [1]. 
The model parameters are based on MC or data*.

Full MC Simulation Driven Approach
– use E𝜈 -> Erec. mapping directly from simulation.

● Fast
● More flexible 

(easier to add new parameters)
● May lack some features 

(e.g. non-Gaussian energy resolution and its 
position dependence)

● Slow
● Relies on accuracy of MC
● Extra flexibility is possible

(introducing extra parameters on top of MC outcome)
● More complete picture
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Two approaches to predict reconstructed spectrum

Standard Approach
– analytical transformations using a 
parameterized model for detector response [1]. 
The model parameters are based on MC or data*.

Full MC Simulation Driven Approach
– use E𝜈 -> Erec. mapping directly from simulation.

● Fast
● More flexible 

(easier to add new parameters)
● May lack some features 

(e.g. non-Gaussian energy resolution and its 
position dependence)

● Slow
● Relies on accuracy of MC
● Extra flexibility is possible

(introducing extra parameters on top of MC outcome)
● More complete picture

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

 * from Daya Bay and calibration data from JUNO, once available

default in JUNO

Can we afford this 
as well?

https://doi.org/10.48550/arXiv.2405.18008
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[JHEP 2021, 4 (2021)]
Expected calibration performance:

< 1% energy scale uncertainty

Non-linearity calibration curve

Calibration
JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

https://link.springer.com/article/10.1007/JHEP03(2021)004
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[JHEP 2021, 4 (2021)]
Expected calibration performance:

< 1% energy scale uncertainty

Non-linearity calibration curve

Calibration
JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

● Official MC will be tuned with 
the data from calibration
 -> more precise training 
data for NN

● NN-based approaches may 
help to tune MC
See talk by Arsenii Gavrikov

https://link.springer.com/article/10.1007/JHEP03(2021)004
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MC-based Detector Response

One has to:

1. Get E𝜈 and Erec from simulation (no oscillations)
2. Put events in energy bins according to Erec 
3. Weight them according to Pee(E𝜈 )
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MC-based Detector Response
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MC-based Detector Response

One has to:

1. Get E𝜈 and Erec from simulation (no oscillations)
2. Put events in energy bins according to Erec 
3. Weight them according to Pee(E𝜈 )

One has to calculate Pee for each event for each set of parameters 
(θ12, θ13, Δm2

21, Δm2
31)

Computationally expensive operations!
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One has to:

1. Get E𝜈 and Erec from simulation (no oscillations)
2. Put events in energy bins according to Erec 
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MC-based Detector Response

One has to calculate Pee for each event for each set of parameters 
(θ12, θ13, Δm2

21, Δm2
31)

Computationally expensive operations!

107 events/spectrum 
✕

103 predictions/fit
⇩

1010 invocations/fit
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1. Calculate Pee(E𝜈 ) analytically and fill histograms on the fly: 
○ SLOW: ~0.1 sec per spectrum

18

Possible Technical Realizations

Example configuration:
  10M events
  400 energy bins
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1. Calculate Pee(E𝜈 ) analytically and fill histograms on the fly: 
○ SLOW: ~0.1 sec per spectrum

2. Precalculate spectra on a fine grid of oscillation parameters (OP) p.
○ Requires massive computation but only once
○ HUGE DISK SPACE: ~1KB per spectrum X (number of points)^(number of parameters)
○ It has to be read from disk, so the access is SLOW
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Possible Technical Realizations

Example configuration:
  10M events
  400 energy bins



Novel Fitting Approach Based on a Neural Network for JUNO October 23, 2024

1. Calculate Pee(E𝜈 ) analytically and fill histograms on the fly: 
○ SLOW: ~0.1 sec per spectrum

2. Precalculate spectra on a fine grid of oscillation parameters (OP) p.
○ Requires massive computation but only once
○ HUGE DISK SPACE: ~1KB per spectrum X (number of points)^(number of parameters)
○ It has to be read from disk, so the access is SLOW

3. Train a Neural Network to predict spectrum (bin contents):
○ Requires same computations as in (2), but only once
○ Requires training
○ Final model is FASTER and requires LESS DISK SPACE
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Possible Technical Realizations

Example configuration:
  10M events
  400 energy bins

NN

p1

p2

p3

p4

400 bins

Δm2
21

Δm2
31

sin2θ12

sin2θ13
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○ SLOW: ~0.1 sec per spectrum

2. Precalculate spectra on a fine grid of oscillation parameters (OP) p.
○ Requires massive computation but only once
○ HUGE DISK SPACE: ~1KB per spectrum X (number of points)^(number of parameters)
○ It has to be read from disk, so the access is SLOW

3. Train a Neural Network to predict spectrum (bin contents):
○ Requires same computations as in (2), but only once
○ Requires training
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Possible Technical Realizations

Example configuration:
  10M events
  400 energy bins

NN

p1

p2

p3

p4

400 bins

Δm2
21

Δm2
31

sin2θ12

sin2θ13

Note: KATRIN already uses this approach [Eur. Phys. J. C 82, 439 (2022)]

https://doi.org/10.1140/epjc/s10052-022-10384-z
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Reactor Spectrum Prediction Performance

Dataset: 
Pre-calculated spectra for 5M combinations of
Δm2

21, Δm2
31, sin2θ12 within 3σ [PDG2022]

sin2θ13 within 5σ [PDG2022]
70% for training, 30% for validation

 
NN architecture (dense layers):

● input layer: 4 input nodes
● 2 layers with 400 nodes and RELU activation function
● output layer: 400 nodes, no activation function

Loss function: MSE
Optimizer: RMSprop(learning_rate=0.02) 

Model size: 322800 parameters / 1.23MB

Prediction speed: ~1 msec / spectrum
~1 sec /  1M-batch
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Reactor Spectrum Prediction Performance

Small oscillatory artifacts 
● could not suppress so far
● no significant effect on analysis observed

Example spectrum prediction

Dataset: 
Pre-calculated spectra for 5M combinations of
Δm2

21, Δm2
31, sin2θ12 within 3σ [PDG2022]

sin2θ13 within 5σ [PDG2022]
70% for training, 30% for validation

 
NN architecture (dense layers):

● input layer: 4 input nodes
● 2 layers with 400 nodes and RELU activation function
● output layer: 400 nodes, no activation function

Loss function: MSE
Optimizer: RMSprop(learning_rate=0.02) 

Model size: 322800 parameters / 1.23MB

Prediction speed: ~1 msec / spectrum
~1 sec /  1M-batch
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Using NN as Part of Fitting Software
NODA (Neutrino Oscillation Data Analysis) Python framework – one of the fitter codes in JUNO

Example: 
~35k events (2 years of data taking), 
a random set of OP values

Successfully coupled with iMinuit
 – demonstrates that it can be used 
for real fitting!

25

MC data
Fit
True
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Summary

● JUNO requires powerful tools for sensitivity and real data analyses of reactor anti-𝜈e. 

● Other analyses, e.g. geoneutrino, also requires fitting of reactor anti-𝜈e. 

● Standard “analytical” approach, used by other fitters, may miss some features which 
are, however, present in the full Monte Carlo simulation.

● Full MC-based approach relies on the accuracy of detector simulation. 

● Full MC-based approach is computationally challenging, but using a neural network 
for spectrum prediction gives a dramatic speed.

● Inclusion of extra parameters, which can be fitted, is being considered.

● First sensitivity results are in agreement with other fitters.


