

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Conference on Computing in High Energy and Nuclear Physics

Novel Fitting Approach Based on a Neural Network for JUNO

 $|G|$

Yury Malyshkin

on behalf of the JUNO collaboration

Jiangmen **U**nderground **N**eutrino **O**bservatory

- **a high-resolution neutrino detector**
	- \bullet Anti- v_{e} from nuclear reactors
	- Solar neutrinos
	- **Geoneutrinos**
	- Atmospheric neutrinos
	- Supernova neutrinos

Novel Fitting Approach Based on a Neural Network for JUNO **CONVICTS 2004** October 23, 2024

2

Jiangmen **U**nderground **N**eutrino **O**bservatory

- **a high-resolution neutrino detector**
	- \bullet Anti- v_{e} from nuclear reactors
	- Solar neutrinos
	- **Geoneutrinos**
	- Atmospheric neutrinos
	- Supernova neutrinos

78% photo-coverage:

 $~17,612k$ large (20-inch) PMTs

~25,600k small (3-inch) PMTs

Novel Fitting Approach Based on a Neural Network for JUNO **CONVICTS 2004** October 23, 2024

3

Jiangmen **U**nderground **N**eutrino **O**bservatory

Novel Fitting Approach Based on a Neural Network for JUNO **CONVICTS 2004** October 23, 2024

4

Reactor Anti- $v_{\rm e}$ Spectrum at JUNO

Unoscillated spectrum is also monitored with a satellite detector (Taishan Antineutrino Observatory) at 44 m from one of the reactors

Reactor Anti- $v_{\rm e}$ Spectrum at JUNO

Positions of small wiggles: **neutrino mass ordering**

Unoscillated spectrum is also monitored with a satellite detector (Taishan Antineutrino Observatory) at 44 m from one of the reactors

Reactor Anti- $v_{\rm e}$ Spectrum at JUNO

Unoscillated spectrum is also monitored with a satellite detector **1996 Container 1996** September 2014 1996 Container 1997 September 2014 1997 September 2019 Container 2019 September 2019 Container 2019 Container 2019 Cont (Taishan Antineutrino Observatory) at 44 m from one of the reactors

Positions of small wiggles: **neutrino mass ordering**

Frequency and amplitudes:

- slow mode: "**solar**" terms $\sin^2\theta_{12}$, Δ*m*²₂₁
- fast mode: "**atmospheric"** Δ*m*² 31

Novel Fitting Approach Based on a Neural Network for JUNO **The Contract of Contract Con**

Oscillation Analysis in JUNO

1. Predict reactor spectrum at JUNO site :

$$
S(E) = f_v(E) \times R^{-2} \times \sigma_{IBD}(E) \times P_{ee}(E, L, \text{ oscillation parameters})
$$

- 2. Predict backgrounds
- 3. Apply detector effects to get **reconstructed spectrum** (in terms of visible energy of prompt signal)
- 4. Fit oscillation parameters under NO and IO assumptions

Standard Approach

– analytical transformations using a parameterized model for detector response [1]. The model parameters are based on MC or data*.

- Fast
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

[1] [arXiv:2405.18008](https://doi.org/10.48550/arXiv.2405.18008) (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Standard Approach

– analytical transformations using a parameterized model for detector response [1]. The model parameters are based on MC or data*.

- **Fast**
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

Full MC Simulation Driven Approach

– use $E_{_{\nu}}$ -> $E_{_{\rm rec.}}$ mapping directly from simulation.

- **Slow**
- Relies on accuracy of MC
- Extra flexibility is possible (introducing extra parameters on top of MC outcome)
- More complete picture

[1] [arXiv:2405.18008](https://doi.org/10.48550/arXiv.2405.18008) (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Standard Approach

– analytical transformations using a parameterized model for detector response [1]. The model parameters are based on MC or data*.

- **Fast**
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

default in JUNO

[1] [arXiv:2405.18008](https://doi.org/10.48550/arXiv.2405.18008) (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Novel Fitting Approach Based on a Neural Network for JUNO **Contained a Contained Acts** Correspondent 23, 2024 **11**

Full MC Simulation Driven Approach

– use $E_{_{\nu}}$ -> $E_{_{\rm rec.}}$ mapping directly from simulation.

- **Slow**
- Relies on accuracy of MC
- Extra flexibility is possible (introducing extra parameters on top of MC outcome)
- More complete picture

Calibration

JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

Automatic Calibration Unit

ROV guide rail

Central cable

Calibration house

Novel Fitting Approach Based on a Neural Network for JUNO **Contained a Contained Acts** Correspondent 23, 2024 **12**

Calibration

JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

Official MC will be tuned with the data from calibration **-> more precise training data for NN**

Automatic Calibration Unit

ROV guide rail

Central cable

Calibration house

NN-based approaches may help to tune MC *See talk by Arsenii Gavrikov*

Novel Fitting Approach Based on a Neural Network for JUNO **Contained a Contained Acts** Corporate 23, 2024 **13**

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_v)$

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_v)$

One has to:

1. Get E_{ν} and E_{rec} from simulation (no oscillations)

 $\Delta_{ij} = \frac{c^3}{\hbar} \cdot \frac{\Delta m_{ij}^2 L}{4E}$

- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_v)$

One has to calculate P_{ee} for each **event** for each **set of parameters** (*θ*12, *θ*13, Δ*m*² 21, Δ*m*² 31) $c_{ii} \equiv \cos \theta_{ii}$ $\mathcal{P}(\overline{\nu}_e \rightarrow \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21}$ $s_{ij} \equiv \sin \theta_{ij}$ $-\sin^2 2\theta_{13} (c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32})$

Computationally expensive operations!

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_v)$

One has to calculate P_{ee} for each **event** for each **set of parameters** (*θ*12, *θ*13, Δ*m*² 21, Δ*m*² 31)

$$
\mathcal{P}(\overline{v}_e \to \overline{v}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21}
$$
\n
$$
- \sin^2 2\theta_{13} \left(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32} \right)
$$
\n
$$
\Delta_{ij} = \frac{c^3}{\hbar} \cdot \frac{\Delta m_{ij}^2 L}{4E}
$$
\nComputationally expensive operations!

Computationally expensive operations!

10⁷ events/spectrum \times 10³ predictions/fit ⇩ **1010 invocations/fit**

Novel Fitting Approach Based on a Neural Network for JUNO **CONVERTING ACCIDENT CONVERTING** October 23, 2024

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
	- **SLOW:** ~0.1 sec per spectrum

Example configuration: 10M events 400 energy bins

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
	- **SLOW:** ~0.1 sec per spectrum

Example configuration: 10M events 400 energy bins

- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
	- Requires massive computation but only once
	- **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
	- It has to be read from disk, so the access is **SLOW**

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
	- **SLOW:** ~0.1 sec per spectrum
- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
	- Requires massive computation but only once
	- **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
	- It has to be read from disk, so the access is **SLOW**
- 3. Train a Neural Network to predict spectrum (bin contents):
	- \circ Requires same computations as in (2), but only once
	- Requires training
	- Final model is **FASTER** and requires **LESS DISK SPACE**

Example configuration: 10M events 400 energy bins

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
	- **SLOW:** ~0.1 sec per spectrum
- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
	- Requires massive computation but only once
	- **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
	- It has to be read from disk, so the access is **SLOW**
- 3. Train a Neural Network to predict spectrum (bin contents):
	- \circ Requires same computations as in (2), but only once
	- Requires training
	- Final model is **FASTER** and requires **LESS DISK SPACE**

Note: KATRIN already uses this approach [[Eur. Phys. J. C 82, 439 \(2022\)](https://doi.org/10.1140/epjc/s10052-022-10384-z)]

400 energy bins

Example configuration:

10M events

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δ*m*²₂₁, Δ*m*²₃₁, sin²θ₁₂ within 3σ [PDG2022] $\sin^2 \overline{\theta}_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: **322800 parameters / 1.23MB**

Prediction speed: ~**1 msec / spectrum**

~1 sec / 1M-batch

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δ*m*²₂₁, Δ*m*²₃₁, sin²θ₁₂ within 3σ [PDG2022] $\sin^2 \overline{\theta}_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: **322800 parameters / 1.23MB**

Prediction speed: ~**1 msec / spectrum ~1 sec / 1M-batch**

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δ*m*²₂₁, Δ*m*²₃₁, sin²θ₁₂ within 3σ [PDG2022] $\sin^2 \overline{\theta}_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: **322800 parameters / 1.23MB**

Prediction speed: ~**1 msec / spectrum ~1 sec / 1M-batch**

Using NN as Part of Fitting Software

NODA (Neutrino Oscillation Data Analysis) Python framework – one of the fitter codes in JUNO

Successfully coupled with iMinuit **– demonstrates that it can be used for real fitting!**

Novel Fitting Approach Based on a Neural Network for JUNO **CONVERTING ACCIDENT CONVERTING** October 23, 2024

Summary

- \bullet JUNO requires powerful tools for sensitivity and real data analyses of reactor anti- $v_{\rm e}$.
- Other analyses, e.g. geoneutrino, also requires fitting of reactor anti- v_{e} .
- Standard "analytical" approach, used by other fitters, may miss some features which are, however, present in the full Monte Carlo simulation.
- Full MC-based approach relies on the accuracy of detector simulation.
- Full MC-based approach is computationally challenging, but using a neural network for spectrum prediction gives a dramatic speed.
- Inclusion of extra parameters, which can be fitted, is being considered.
- First sensitivity results are in agreement with other fitters.