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Jiangmen Underground Neutrino Observatory

— a high-resolution neutrino detector

° Anti-ve from nuclear reactors
e Solar neutrinos
e Geoneutrinos

e Atmospheric neutrinos
74 institutes in 17 countries/regions
~700 collaborators

Hong Kong s e g

e Supernova-fieutrinos

~ Taishan NPP
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See also talk by Xiaomei Zhang
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Jiangmen Underground Neutrino Observatory

— a high-resolution neutrino detector
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Anti-v_ from nuclear reactors
Solar neutrinos
Geoneutrinos

Atmospheric neutrinos
Supernova neutrinos

S
~ Taishan NPP

Top tracker and
calibration house

Water pool

Earth magnetic
field compensation
coils

Photomultiplier
tubes

Acrylic spherical
vessel filled with
liquid scintillator

Acrylic supporting

78% photo-coverage:

~17,612k large (20-inch) PMTs
~25,600k small (3-inch) PMTs
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Jiangmen Underground Neutrino Observatory

Physics potential:
e Neutrino oscillation properties:
o Neutrino mass ordering

o Sub-percent precision for sin“6,,, Am?,,, and Am?,, ﬂ
e Sterile neutrinos / v
e Neutrino as messengers to study: PR COAOES,

o Earth interior =

o Fusion reactions in Sun
o Supernova explosions
O e

e Rare events:
o Proton decay
o Dark matter search

_,\t{ o |
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Reactor Anti-v_ Spectrum at JUNO
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Unoscillated spectrum is also monitored with a satellite detector
(Taishan Antineutrino Observatory) at 44 m from one of the reactors
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Reactor Anti-v_ Spectrum at JUNO

Events per 1 MeV
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Unoscillated spectrum is also monitored with a satellite detector
(Taishan Antineutrino Observatory) at 44 m from one of the reactors
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Positions of small wiggles: neutrino mass ordering

normal hierarchy (NH)
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~30in 6 years
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Reactor Anti-v_ Spectrum at JUNO

[ 6 years of data taking

Events per 1 MeV

—— No oscillations
Only solar term

—— Normal ordering

—— Inverted ordering

Positions of small wiggles: neutrino mass ordering

normal hierarchy (NH)
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Unoscillated spectrum is also monitored with a satellite detector
(Taishan Antineutrino Observatory) at 44 m from one of the reactors
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Frequency and amplitudes:
slow mode: “solar” terms sin?0
fast mode: “atmospheric” Am?,,

2
12’ Am 21

<1% precision in 6 years
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Oscillation Analysis in JUNO

1. Predict reactor spectrum at JUNO site :
S(E)=f(E) X R2 X o

2. Predict backgrounds

(E) X P_(E, L, oscillation parameters)

3. Apply detector effects to get reconstructed spectrum (in terms of visible energy of prompt signal)

4. Fit oscillation parameters under NO and IO assumptions

Detection channel:
Inverse Beta-Decay (IBD)

Prompt signal
handle for neutrino energy:

(T e T =R i AR T

176+p—>e++n

Delayed signal
neutron capture: 2.2 MeV (H) or
4.9 MeV ('2C) within ~200 ps
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Two approaches to predict reconstructed spectrum

Standard Approach

— analytical transformations using a
parameterized model for detector response [1].
The model parameters are based on MC or data*.

e Fast
e More flexible
(easier to add new parameters)

e May lack some features
(e.g. non-Gaussian energy resolution and its
position dependence)

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available
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Two approaches to predict reconstructed spectrum

Standard Approach

— analytical transformations using a
parameterized model for detector response [1].
The model parameters are based on MC or data*.

e Fast
e More flexible
(easier to add new parameters)

e May lack some features
(e.g. non-Gaussian energy resolution and its
position dependence)

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Full MC Simulation Driven Approach

—use E ->E__ mapping directly from simulation.

e Slow
e Relies on accuracy of MC

e Extra flexibility is possible
(introducing extra parameters on top of MC outcome)

e More complete picture
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Two approaches to predict reconstructed spectrum

Standard Approach

— analytical transformations using a
parameterized model for detector response [1].
The model parameters are based on MC or data*.

e [ast
e More flexible

(easier to add new parameters)

e May lack some features
(e.g. non-Gaussian energy resolution and its

position dependence)

default in JUNO

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Full MC Simulation Driven Approach

—use E ->E__ mapping directly from simulation.

e Slow
e Relies on accuracy of MC

e Extra flexibility is possible
(introducing extra parameters on top of MC outcome)

e More complete picture

Can we afford this
as well?

Novel Fitting Approach Based on

a Neural Network for JUNO
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Calibration

JUNO will have multiple calibration systems:
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Expected calibration performance:

< 1% energy scale uncertainty | 2H=--2021A (2021
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Calibration

JUNO will have multiple calibration systems:
- to cover the whole detector

to cover the whole energy range
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[JHEP 2021, 4 (2021)]
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MC-based Detector Response

One has to:

1. Get E and E__from simulation (no oscillations)
2. Putevents in energy bins according to E..
3. Weight them according to P__(E )
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MC-based Detector Response

One has to:

1. Get E and E__from simulation (no oscillations)
2. Putevents in energy bins according to E..
3. Weight them according to P__(E )

One has to calculate P__ for each event for each set of parameters

2 2
- R U B 4 42 Cij = €08 by
P, —v,) =1-sin"260;, |5 sin” Ay sij = siné;
iy = t
—sin203 (C%z sin® Az; + s%z sin’ A32)

A3 AmiL

Ajj=——2

YR T4E

Computationally expensive operations!
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MC-based Detector Response

One has to:

1. Get E and E__from simulation (no oscillations)
2. Putevents in energy bins according to E..
3. Weight them according to P__(E )

One has to calculate P__ for each event for each set of parameters 107 events/spectrum
2 2
(612’ 913’ Am 21’ Am 31) X
P, —v,) =1 —sin* 26|, c}; sin® Ay ¢ij = C?Sg"f 10° predictions/fit
Sij = Sin ij

—sin203 (0%2 sin® Asp + s%z sin’ A32) -

s 10"? invocations/fit
ij = < °
Computationally expensive operations! noAE
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Possible Technical Realizations

. TR . Example configuration:
1. Calculate P_(E ) analytically and fill histograms on the fly: 10M events
o SLOW: ~0.1 sec per spectrum 400 energy bins
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Possible Technical Realizations

. TR . Example configuration:
1. Calculate P_(E ) analytically and fill histograms on the fly: 10M events
o SLOW: ~0.1 sec per spectrum 400 energy bins

2. Precalculate spectra on a fine grid of oscillation parameters (OP) p.
o Requires massive computation but only once
o HUGE DISK SPACE: ~1KB per spectrum X (number of points)*(number of parameters)
o It has to be read from disk, so the access is SLOW
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Possible Technical Realizations

. TR . Example configuration:
1. Calculate P_(E ) analytically and fill histograms on the fly: 10M events
o SLOW: ~0.1 sec per spectrum 400 energy bins

2. Precalculate spectra on a fine grid of oscillation parameters (OP) p.
o Requires massive computation but only once
o HUGE DISK SPACE: ~1KB per spectrum X (number of points)*(number of parameters)
o It has to be read from disk, so the access is SLOW

3. Train a Neural Network to predict spectrum (bin contents): Am?,. @ ]
o Requires same computations as in (2), but only once A2, @ §
o Requires training sin%6, () g
o Final model is FASTER and requires LESS DISK SPACE sin?0, @ -

Note: KATRIN already uses this approach [Eur. Phys. J. C 82, 439 (2022)]
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https://doi.org/10.1140/epjc/s10052-022-10384-z

Reactor Spectrum Prediction Performance

Dataset:
Pre-calculated spectra for 5M combinations of
Am?,., Am?,., sin®8,, within 30 [PDG2022]
sin’g,, within 50 [PDG2022]
70% for training, 30% for validation

NN architecture (dense layers):
e input layer: 4 input nodes
e 2 layers with 400 nodes and RELU activation function
e output layer: 400 nodes, no activation function

Loss function: MSE
Optimizer: RMSprop(learning_rate=0.02)

Model size: 322800 parameters / 1.23MB

Prediction speed: ~1 msec / spectrum
~1 sec/ 1M-batch
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Reactor Spectrum Prediction Performance

Dataset:
Pre-calculated spectra for 5M combinations of 098 [ tue
Am?,., Am?_, sin®, within 30 [PDG2022] 1 prediction
in2 AT 0.06 A
sin“0,, within 50 [PDG2022] /J‘/
70% for training, 30% for validation g ol \
E 0.04 -
NN architecture (dense layers): —
e inputlayer: 4 input nodes o _ Example spectrum prediction
e 2 layers with 400 nodes and RELU activation function o 0004, , , : : :
e output layer: 400 nodes, no activation function s 10
S 0.5
Loss function: MSE s 005
Optimizer: RMSprop(learning_rate=0.02) 2 ]
N

Reconstructed Energy, MeV

Model size: 322800 parameters / 1.23MB

Prediction speed: ~1 msec / spectrum
~1 sec/ 1M-batch
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Reactor Spectrum Prediction Performance

Dataset:
Pre-calculated spectra for 5M combinations of S (] true
An?,., Am?,_, sin?0,, within 30 [PDG2022] [ prediction
sin%,, within 50 [PDG2022] 002 S
70% for training, 30% for validation g 4 \
£ 0.04 -
NN architecture (dense layers): —
e inputlayer: 4 input nodes o _ Example spectrum prediction
e 2 layers with 400 nodes and RELU activation function J_ , , , , ,

0.00
1.0

0.5 1
0.0 1

o I

-1.0

e output layer: 400 nodes, no activation function

Loss function: MSE
Optimizer: RMSprop(learning_rate=0.02)

elative difference, %

K

Model size: 322800 parameters / 1.23MB

4 5 6 7 8
Reconstructed Energy, MeV

Prediction speed:  ~1 msec / spectrum Small oscillatory artifacts
~1 sec/ 1M-batch e could not suppress so far
e no significant effect on analysis observed
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Using NN as Part of Fitting Software

NODA (Neutrino Oscillation Data Analysis) Python framework — one of the fitter codes in JUNO

Migrad
175 - MC data FCN=178.7 Nfen =332
—— Fit EDM = 0.0135 (Goal: 0.2)
150 1 Valid Minimum Below EDM threshold (goal x 10)
: [ T TrU e No parameters at limit Below call limit
-a 12 5 7 Hesse ok Covariance accurate
]
Q 100 - Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
] 0 dm2_21 7.410 0.022 735 7.7
g 1 dm2_31 2.502 0.013 2.49 2.56
8 2 sin2_th12 0.2974 0.0021 0.294 0.32
3 sin2_th13 219 0.06 2.1 2.25
4 norm  0.995 0.010 0 10
dm2_21 dm2_31 sin2_th12 sin2_th13 norm
dm2_21 0.000492 0.01e-3(0.023) 21e-6(0.454) -0.1e-3(-0.097) 0.12e-3 (0.564)
dm2_31 0.01e-3(0.023) 0.00019  1e-6 (0.023)  0.01e-3(0.014) 0(0.015)
sin2_th12  21e-6 (0.454) 1e-6 (0.023) 4.55e-06 15e-6 (0.099) 119-6(0..13) |
sin2_th13 -0.1e-3 (-0.097) 0.01e-3(0.014) 15e-6 (0.099) 0.00473 -0.05e-3 (-0.080)
norm 0.12e-3 (0.564) 0(0.015) 17e-6 (0.813) -0.05e-3 (-0.080) 9.84e-05

Successfully coupled with iMinuit
— demonstrates that it can be used
for real fitting!

Relative Difference (%)

Reconstructed Energy (MeV)
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e JUNO requires powerful tools for sensitivity and real data analyses of reactor anti-v_.
e Other analyses, e.g. geoneutrino, also requires fitting of reactor anti-v_.

e Standard “analytical” approach, used by other fitters, may miss some features which
are, however, present in the full Monte Carlo simulation.

e Full MC-based approach relies on the accuracy of detector simulation.

e Full MC-based approach is computationally challenging, but using a neural network
for spectrum prediction gives a dramatic speed.

e Inclusion of extra parameters, which can be fitted, is being considered.

e First sensitivity results are in agreement with other fitters.
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