

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Conference on Computing in High Energy and Nuclear Physics

Novel Fitting Approach Based on a Neural Network for JUNO

IGIL

Yury Malyshkin

on behalf of the JUNO collaboration

Jiangmen Underground Neutrino Observatory

- a high-resolution neutrino detector
 - Anti- v_{ρ} from nuclear reactors
 - Solar neutrinos
 - Geoneutrinos
 - Atmospheric neutrinos
 - Supernova neutrinos

Novel Fitting Approach Based on a Neural Network for JUNO

Jiangmen Underground Neutrino Observatory

- a high-resolution neutrino detector
 - Anti- v_{ρ} from nuclear reactors
 - Solar neutrinos
 - Geoneutrinos
 - Atmospheric neutrinos
 - Supernova neutrinos

78% photo-coverage:

~17,612k large (20-inch) PMTs

~25,600k small (3-inch) PMTs

Novel Fitting Approach Based on a Neural Network for JUNO

Jiangmen Underground Neutrino Observatory

Novel Fitting Approach Based on a Neural Network for JUNO

Reactor Anti- v_{e} Spectrum at JUNO

Unoscillated spectrum is also monitored with a satellite detector (Taishan Antineutrino Observatory) at 44 m from one of the reactors

Reactor Anti- v_{e} Spectrum at JUNO

Positions of small wiggles: **neutrino mass ordering**

Unoscillated spectrum is also monitored with a satellite detector (Taishan Antineutrino Observatory) at 44 m from one of the reactors

Reactor Anti- v_{e} Spectrum at JUNO

Unoscillated spectrum is also monitored with a satellite detector (Taishan Antineutrino Observatory) at 44 m from one of the reactors Positions of small wiggles: neutrino mass ordering

Frequency and amplitudes:

- slow mode: "**solar**" terms $\sin^2\theta_{12}$, Δm^2_{21}
- fast mode: "atmospheric" Δm_{31}^2

<1% precision in 6 years

Novel Fitting Approach Based on a Neural Network for JUNO

Oscillation Analysis in JUNO

1. Predict reactor spectrum at JUNO site :

$$S(E) = f_{v}(E) \times \mathbb{R}^{-2} \times \sigma_{\text{IBD}}(E) \times P_{ee}(E, L, \text{ oscillation parameters})$$

- 2. Predict backgrounds
- 3. Apply detector effects to get reconstructed spectrum (in terms of visible energy of prompt signal)
- 4. Fit oscillation parameters under NO and IO assumptions

Standard Approach

analytical transformations using a parameterized model for detector response [1].
 The model parameters are based on MC or data*.

- Fast
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Standard Approach

analytical transformations using a parameterized model for detector response [1].
 The model parameters are based on MC or data*.

- Fast
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

Full MC Simulation Driven Approach

– use $E_{\nu} \rightarrow E_{\text{rec.}}$ mapping directly from simulation.

- Slow
- Relies on accuracy of MC
- Extra flexibility is possible (introducing extra parameters on top of MC outcome)
- More complete picture

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Standard Approach

analytical transformations using a parameterized model for detector response [1].
 The model parameters are based on MC or data*.

- Fast
- More flexible (easier to add new parameters)
- May lack some features (e.g. non-Gaussian energy resolution and its position dependence)

default in JUNO

[1] arXiv:2405.18008 (2024), accepted by Chin.Phys.C

* from Daya Bay and calibration data from JUNO, once available

Novel Fitting Approach Based on a Neural Network for JUNO

Full MC Simulation Driven Approach

– use $E_{\nu} \rightarrow E_{\text{rec.}}$ mapping directly from simulation.

- Slow
- Relies on accuracy of MC
- Extra flexibility is possible (introducing extra parameters on top of MC outcome)
- More complete picture

Calibration

JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

Automatic Calibration Unit

ROV guide rail

Central cable

Calibration house

Novel Fitting Approach Based on a Neural Network for JUNO

Calibration

JUNO will have multiple calibration systems:

- to cover the whole detector
- to cover the whole energy range
- to monitor detector stability

 Official MC will be tuned with the data from calibration
 -> more precise training data for NN

Automatic Calibration Unit

ROV guide rail

Central cable

Calibration house

 NN-based approaches may help to tune MC See talk by Arsenii Gavrikov

Novel Fitting Approach Based on a Neural Network for JUNO

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to $E_{\rm rec}$
- 3. Weight them according to $P_{ee}(E_{\nu})$

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to $E_{\rm rec}$
- 3. Weight them according to $P_{ee}(E_{\nu})$

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_{v})$

One has to calculate P_{ee} for each **event** for each **set of parameters** $(\theta_{12}, \theta_{13}, \Delta m_{21}^2, \Delta m_{31}^2)$

$$\mathcal{P}(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}) = 1 - \sin^{2} 2\theta_{12} c_{13}^{4} \sin^{2} \Delta_{21}$$

$$- \sin^{2} 2\theta_{13} \left(c_{12}^{2} \sin^{2} \Delta_{31} + s_{12}^{2} \sin^{2} \Delta_{32} \right)$$

$$\Delta_{ij} = \frac{c^{3}}{\hbar} \cdot \frac{\Delta m_{ij}^{2} L}{4E}$$
Computationally expensive operations!

One has to:

- 1. Get E_{ν} and E_{rec} from simulation (no oscillations)
- 2. Put events in energy bins according to E_{rec}
- 3. Weight them according to $P_{ee}(E_{v})$

One has to calculate P_{ee} for each **event** for each **set of parameters** $(\theta_{12}, \theta_{13}, \Delta m_{21}^2, \Delta m_{31}^2)$

$$\mathcal{P}(\overline{\nu}_{e} \to \overline{\nu}_{e}) = 1 - \sin^{2} 2\theta_{12} c_{13}^{4} \sin^{2} \Delta_{21} \qquad c_{ij} \equiv \cos \theta_{ij}$$
$$- \sin^{2} 2\theta_{13} \left(c_{12}^{2} \sin^{2} \Delta_{31} + s_{12}^{2} \sin^{2} \Delta_{32} \right) \qquad \Delta_{ij} = \frac{c^{3}}{\hbar} \cdot \frac{\Delta m_{ij}^{2} L}{4E}$$

Computationally expensive operations!

Possible Technical Realizations

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
 - SLOW: ~0.1 sec per spectrum

Example configuration: 10M events 400 energy bins

Possible Technical Realizations

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
 - **SLOW:** ~0.1 sec per spectrum

Example configuration: 10M events 400 energy bins

- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
 - Requires massive computation but only once
 - **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
 - It has to be read from disk, so the access is **SLOW**

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
 - SLOW: ~0.1 sec per spectrum
- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
 - Requires massive computation but only once
 - **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
 - It has to be read from disk, so the access is **SLOW**
- 3. Train a Neural Network to predict spectrum (bin contents):
 - Requires same computations as in (2), but only once
 - Requires training
 - Final model is **FASTER** and requires **LESS DISK SPACE**

Example configuration: 10M events 400 energy bins

Possible Technical Realizations

- 1. Calculate $P_{ee}(E_{\nu})$ analytically and fill histograms on the fly:
 - **SLOW:** ~0.1 sec per spectrum

- Example configuration: 10M events 400 energy bins
- 2. Precalculate spectra on a fine grid of oscillation parameters (OP) **p**.
 - Requires massive computation but only once
 - **HUGE DISK SPACE:** ~1KB per spectrum X (number of points)^(number of parameters)
 - It has to be read from disk, so the access is **SLOW**
- 3. Train a Neural Network to predict spectrum (bin contents):
 - Requires same computations as in (2), but only once
 - Requires training
 - Final model is **FASTER** and requires **LESS DISK SPACE**

Note: KATRIN already uses this approach [Eur. Phys. J. C 82, 439 (2022)]

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δm_{21}^2 , Δm_{31}^2 , $\sin^2 \theta_{12}$ within 3 σ [PDG2022] $\sin^2 \theta_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: 322800 parameters / 1.23MB

Prediction speed: ~1 msec / spectrum

~1 sec / 1M-batch

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δm^2_{21} , Δm^2_{31} , $\sin^2 \theta_{12}$ within 3 σ [PDG2022] $\sin^2 \theta_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: 322800 parameters / 1.23MB

Prediction speed:

~1 msec / spectrum ~1 sec / 1M-batch

Reactor Spectrum Prediction Performance

Dataset:

Pre-calculated spectra for 5M combinations of Δm_{21}^2 , Δm_{31}^2 , $\sin^2 \theta_{12}$ within 3 σ [PDG2022] $\sin^2 \theta_{13}$ within 5 σ [PDG2022] 70% for training, 30% for validation

NN architecture (dense layers):

- input layer: 4 input nodes
- 2 layers with 400 nodes and RELU activation function
- output layer: 400 nodes, no activation function

Loss function: **MSE** Optimizer: **RMSprop(learning_rate=0.02)**

Model size: 322800 parameters / 1.23MB

Prediction speed:

~1 msec / spectrum ~1 sec / 1M-batch

Using NN as Part of Fitting Software

NODA (Neutrino Oscillation Data Analysis) Python framework - one of the fitter codes in JUNO

Migrad													
FCN = 178.7				Nfcn = 332									
EC	0M = 0.01	35 (Go	al: 0.2)									
Valid Minimum				Be	Below EDM threshold (goal x 10)								
No parameters at limit					Below call limit								
Hesse ok					Covariance accurate								
	Nam	ne V	alue	Hess	e Error	Minos	Error-	Minos	Error+	Limit-	Limit+	Fixed	
0	dm2_2	21 7	7.410		0.022					7.35	7.71		
1	dm2_3	31 2	2.502		0.013					2.49	2.56		
2	sin2_th	12 0.	2974		0.0021					0.294	0.32		
3	sin2_th	13	2.19		0.06					2.11	2.25		
4	nor	m C).995		0.010					0	10		
			dm2	_21	d	m2_31	sin	2_th12		sin2_th1	13	n	orm
dm2_21			0.000	492	0.01e-3	(0.023)	21e-6	(0.454)	-0.1e	-3 (-0.09	7) 0.1	2e-3 (0.5	64)
dm2_31		0.01e	0.01e-3 (0.023		3) 0.000		1e-6 (0.023)		0.01e-3 (0.014)		4)	0 (0.015)	
sin2_th12		216	21e-6 (0.454		1e-6	(0.023)	4	55e-06 15		e-6 (0.099)		7e-6 (0.813)	
sin2_th13		-0.1e-3 (-0.0		97) 0.01e-3		(0.014)	15e-6	(0.099)		0.0047	3 -0.05e-3 (-0.0		(080
	norm	0.126	e-3 (0.5	564)	0	(0.015)	17e-6	(0.813)	-0.05e	-3 (-0.08	0)	9.84	2-05

Successfully coupled with iMinuit – demonstrates that it can be used for real fitting!

Novel Fitting Approach Based on a Neural Network for JUNO

Summary

- JUNO requires powerful tools for sensitivity and real data analyses of reactor anti- v_{ρ} .
- Other analyses, e.g. geoneutrino, also requires fitting of reactor anti- v_{ρ} .
- Standard "analytical" approach, used by other fitters, may miss some features which are, however, present in the full Monte Carlo simulation.
- Full MC-based approach relies on the accuracy of detector simulation.
- Full MC-based approach is computationally challenging, but using a neural network for spectrum prediction gives a dramatic speed.
- Inclusion of extra parameters, which can be fitted, is being considered.
- First sensitivity results are in agreement with other fitters.