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The JUNO experiment

                     1  

• Jiangmen Underground Neutrino Observatory (JUNO) [1]:

o multi-purpose neutrino experiment located in China

o made of 20 kt liquid scintillator (LS), acting both as:

▪ the interaction medium

▪ the detection medium

o ~78% photo-coverage by photo-multiplier tubes

o at the latest stage of its construction

• Neutrino energy is measured through calorimetry of final state 

leptons

• Main goals of JUNO [2, 3]:

o neutrino mass ordering with 3σ in ~6-7 years of
data-taking

o sub-percent measurements of the following
oscillation parameters:

• The goals require to keep energy-related systematic uncertainties 

below 1%

[1] JUNO Collaboration 2016 J. Phys. G: Nucl. Part. Phys. 43 030401
[2] JUNO Collaboration 2022 Chinese Phys. C 46 123001
[3] JUNO Collaboration 2024 arXiv:2405.18008

More details in the backup
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Physics challenge

5 calibration sources*
• LS emits visible light when ionized by crossing charged 

particles 

• Relation between light detected (NPE) and energy 

deposited in the LS is described by several parameters [1]

• Tuning these parameters to have JUNO MC matching real 

data is pivotal to control systematic uncertainties

• We use JUNO calibration campaign to tune the 

parameters

Monte Carlo (MC) 
simulation
software

MC tuning:
Adjusting key parameters of
the LS in the simulation

[1] JUNO Collaboration 2024 arXiv:2405.17860 *more details in the backup
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MC tuning strategies

                   3.1  

• The key parameters of the LS to be tuned:

o the Birks' constant: kB (a material-dependent quenching 

factor)

o Cherenkov yield factor: fC (an effective parameter to adjust 

Cherenkov light yield)

o Scintillation light yield per 1 MeV: LY

• All the parameters are highly correlated and so multiple 

calibration sources are adopted to break the correlations

LY

kB

fC
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MC tuning strategies

• The key parameters of the LS to be tuned:

o the Birks' constant: kB (a material-dependent quenching 

factor)

o Cherenkov yield factor: fC (an effective parameter to adjust 

Cherenkov light yield)

o Scintillation light yield per 1 MeV: LY

• All the parameters are highly correlated and so multiple 

calibration sources are adopted to break the correlations

                   3.2  

• How to tune the parameters?

• Find the set of parameters minimizing distance (chi2, likelihood) between simulated calibration data and a 

reference dataset

• Best parameter values found through a fit (optimizer / sampler)

LY

kB

fC
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MC tuning strategies

• How to tune the parameters?

• The most straightforward approach would be... 

                   3.3  

Fit
D(full MC data, real data) min

Real calib. data with:

kBr, fCr, LYr

Full MC calib. data with:
kBg fCg LYg

Best parameters

At each step of the fit, we generate a lot of
events with full MC to build spectra of the
sources with the corresponding kBg fCg LYg



Fit
D(full MC data, real data) min

Real calib. data with:

kBr, fCr, LYr

Full MC calib. data with:
kBg fCg LYg

Best parameters

Impractical and slow. Can we replace it with a surrogate model?

At each step of the fit, we generate a lot of
events with full MC to build spectra of the
sources with the corresponding kBg fCg LYg

Arsenii Gavrikov (UNI & INFN Padova)                    3.4  

MC tuning strategies

• How to tune the parameters?

• The most straightforward approach would be... 



Full MC samples
with diff. values
of parameters

• How effectively and precisely estimate the parameters?

• We propose a fast MC tuning method based on Machine Learning (ML):

o Use a surrogate model to generate artificial spectra to be compared with the 

reference spectra during the fit
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MC tuning strategies



Fast ML generator
of energy spectra E*
for diff. values of
parameters

Full MC samples
with diff. values
of parameters

Training

Able to interpolate in the
parameters space

*represented by amount of light collected
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MC tuning strategies

• How effectively and precisely estimate the parameters?

• We propose a fast MC tuning method based on Machine Learning (ML):

o Use a surrogate model to generate artificial spectra to be compared with the 

reference spectra during the fit



Fast ML generator
of energy spectra E*
for diff. values of
parameters

Real calib. data with:

kBr, fCr, LYr

Gen. calib. data with:
kBg fCg LYg

Full MC samples
with diff. values
of parameters

Training

Able to interpolate in the
parameters space

*represented by amount of light collected
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MC tuning strategies

• How effectively and precisely estimate the parameters?

• We propose a fast MC tuning method based on Machine Learning (ML):

o Use a surrogate model to generate artificial spectra to be compared with the 

reference spectra during the fit



Fast ML generator
of energy spectra E*
for diff. values of
parameters

Real calib. data with:

kBr, fCr, LYr

Gen. calib. data with:
kBg fCg LYg

Full MC samples
with diff. values
of parameters

Training

Able to interpolate in the
parameters space

Fit
D(gen. data, real data) min

At each step of the fit, we generate a lot of events 
with an ML generator to build spectra of the
sources with the corresponding kBg fCg LYg

*represented by amount of light collected
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MC tuning strategies

• How effectively and precisely estimate the parameters?

• We propose a fast MC tuning method based on Machine Learning (ML):

o Use a surrogate model to generate artificial spectra to be compared with the 

reference spectra during the fit



Fast ML generator
of energy spectra E*
for diff. values of
parameters

Real calib. data with:

kBr, fCr, LYr

Gen. calib. data with:
kBg fCg LYg

Full MC samples
with diff. values
of parameters

Training

Able to interpolate in the
parameters space

Best parameters

Fit
D(gen. data, real data) min

At each step of the fit, we generate a lot of events 
with an ML generator to build spectra of the
sources with the corresponding kBg fCg LYg

*represented by amount of light collected
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MC tuning strategies

• How effectively and precisely estimate the parameters?

• We propose a fast MC tuning method based on Machine Learning (ML):

o Use a surrogate model to generate artificial spectra to be compared with the 

reference spectra during the fit
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Data description
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• JUNO employs sources emitting 

neutrons and gammas at different 

energies

• Each source is deployed alone and it 

results in an energy spectrum 

measured in NPE

• Spectra of all sources need to be 

analyzed simultaneously to grasp LS 

energy response



How parameters impact 
the calibration data?
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How LS parameters impact the calibration data

• Light yield is the most 
influential parameter

• All sources are highly 
affected

• kB and fC are fixed:
o kB = 15.45 [g/cm2/GeV]
o fC = 0.525

• LY is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown
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LY effect



• kB effect is smaller than 
LY and anticorrelated 
with the photo peak

• All sources are affected

• LY and fC are fixed:
o LY = 10100 [1/MeV]
o fC = 0.525

• kB is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown
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How LS parameters impact the calibration data

kB effect



• fC has a minor effect to 
the spectra

• Cs137 is not affected at all
• Slight effect for Co60 and 

K40

• kB and LY are fixed:
o kB = 15.45 [g/cm2/GeV]
o LY = 10100 [1/MeV]

• fC is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown
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How LS parameters impact the calibration data

fC effect



Data: training + validation
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Data: training + validation

• Discrete grid of the parameters 

• Per each of the sources:

o Cs137; K40; Co60; AmBe; AmC

Huge dataset with full MC simulation:

LY and kB example
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• For each point 10k events
• ~600M events in total
• A few millions of CPU hours for the production

Training data; 21 points per param, 213 combinations:

1. kB: [      6, 6.9, …,        24]
2. fC: [       0, 0.05, …,          1]
3. LY: [8000, 8200, …, 12000]



Validation data; 10 points per param, 103 combinations:

1. kB: [ 7.35,     9.15, …,        24)
2. fC: [0.075,  0.175, …,          1)
3. LY: [ 8300,   8700, …, 12000)

this dataset is used to validate the model during 
training and to optimize its hyperparameters...

For each point 10k events
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Data: training + validation

• Discrete grid of the parameters 

• Per each of the sources:

o Cs137; K40; Co60; AmBe; AmC

Huge dataset with full MC simulation:

Training data; 21 points per param, 213 combinations:

1. kB: [      6, 6.9, …,        24]
2. fC: [       0, 0.05, …,          1]
3. LY: [8000, 8200, …, 12000]



Data: testing datasets
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Testing the ML output (I)

Testing data №1; 10 points per param, 103 combinations:

1. kB: [ 6.45,    8.25, …,        24)
2. fC: [0.025, 0.125, …,          1)
3. LY: [ 8100,  8500, …, 12000)

For each point 10k events
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• Discrete grid of the parameters 

• Per each of the sources:

o Cs137; K40; Co60; AmBe; AmC

Huge dataset with full MC simulation:

this dataset is used to check the bias of the model 
across all the points of the grid...



Testing data №2; a single point:

1. kB: 15.45 [g/cm2/GeV]
2. fC: 0.525
3. LY: 10100 [1 / MeV]

Different exposures in numbers of events per source:
• 1k; 2k; 5k; 10k; 25k
• 1k datasets with diff. seeds per each exposure

this dataset is used to perform the systematic 
uncertainty analysis of the model...
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Testing the ML output (II)

• Discrete grid of the parameters 

• Per each of the sources:

o Cs137; K40; Co60; AmBe; AmC

Huge dataset with full MC simulation:



Testing data №2; a single point:

1. kB: 15.45 [g/cm2/GeV]
2. fC: 0.525
3. LY: 10100 [1 / MeV]

1k events

25k events

Different exposures in numbers of events per source:
• 1k; 2k; 5k; 10k; 25k
• 1k datasets with diff. seeds per each exposure
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Testing the ML output (II)



ML models
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ML models

Conditions:
kB, fC, LY + source

type S

Multi-output regressor

Aims to directly learn a mapping 
from the parameters and a 
source type to an event rate λi 

We use a small Transformer-based model as the Regressor

learns unique mapping between the three parameters 
and a source type and an event rate λi in each bin

+ fast and reliable model
 - requires pre-defined binning

Produced spectra 
is always the same 
for the same input 
parameters
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Conditions:
kB, fC, LY + source

type S

Multi-output regressor

We use a small Transformer-based model as the Regressor

ML generator

Aims to learn the conditional probability 
of the energies* for a given set of 
parameters and a source type:

Noise vector
(usually, multidim. 

normal distribution)

Sampling energies 
under conditions:
{kBi, fCi, LYi, Si}

Produced spectra 
is always the same 
for the same input 
parameters

+ potentially better generalize
+ posterior
+ no pre-defined binning

learns unique mapping between the three parameters 
and a source type and an event rate λi in each bin

+ fast and reliable model
 - requires pre-defined binning

Aims to directly learn a mapping 
from the parameters and a 
source type to an event rate λi 

We use Generative Adversarial Networks (GAN) as the ML generator

Final goal
As an Intermediate step: producing rates

*represented by amount of light collected
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ML models



Models' performance
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Regressor performance on calibration spectra

the testing dataset №2 point is between the 
points from the training dataset: interpolation

15.0 15.9

0.5 0.55

10100 10200

LY

fC

kB

10110

0.525

15.45

Interpolation with the Regressor model:
Smooth and denoised

training points

Model provides rates
for any continuous values 
of the parameters
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GAN and Regressor performance on calibration spectra

Interpolation with the Regressor model:
Smooth and denoised

Interpolation with the GAN model:
smooth in the peaks, struggles in 
the very low statistics regions

GAN Regressor
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• Bin-to-bin LogPoisson as the cost function

• Markov-chain Monte Carlo (MCMC) method

• Estimate the kB, fC, LY parameters (using ORSA [1])

• Explores full phase space, provides full posterior

• Parameters estimation for the all sources: combined fit

• Shows correlation between the parameters

                   11.1

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

15.0 15.9

0.5 0.55

10100 10200

LY

fC

kB

10110

0.525

15.45

training points

testing point

Precision and accuracy of parameter estimation



Precision and accuracy of parameter estimation
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• Bin-to-bin LogPoisson as the cost function

• Markov-chain Monte Carlo (MCMC) method

• Estimate the kB, fC, LY parameters (using ORSA [1])

• Explores full phase space, provides full posterior

• Parameters estimation for the all sources: combined fit

• Shows correlation between the parameters

                    11.2

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

15.0 15.9

0.5 0.55

10100 1020010110

0.525

15.45

Regressor

kB

fC

LY
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Regressor
True values

Best fit value

• Parameters estimation combined:
o kB: 15.54   +- 0.35   15.45 [g/cm2/GeV]
o LY: 10112 +-  24      10100 [1/MeV]
o fC: 0.499   +- 0.030   0.525 

posteriors

                   11.3

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

• Bin-to-bin LogPoisson as the cost function

• Markov-chain Monte Carlo (MCMC) method

• Estimate the kB, fC, LY parameters (using ORSA [1])

• Explores full phase space, provides full posterior

• Parameters estimation for the all sources: combined fit

• Shows correlation between the parameters

Precision and accuracy of parameter estimation

15.0 15.9

0.5 0.55

10100 10200

LY

fC

kB

10110

0.525

15.45

training points

testing point
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• Parameters estimation combined:
o kB: 15.54   +- 0.35   15.45 [g/cm2/GeV]
o LY: 10112 +-  24      10100 [1/MeV]
o fC: 0.499   +- 0.030   0.525 

Parameter estimation: GAN vs Regressor

Regressor
True values

Best fit value

GAN
True values

Best fit value

• Parameters estimation combined:
o kB: 15.58  +-  0.28     15.45 [g/cm2/GeV]
o LY: 10118 +-  20      10100 [1/MeV]
o fC: 0.516   +-  0.025     0.525

posteriors

                    12



How to evaluate ML-driven 
systematic uncertainty?

Arsenii Gavrikov (UNI & INFN Padova)



Arsenii Gavrikov (UNI & INFN Padova)

• To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different JUNOSW generator seed per each exposure

                    13.1

How to evaluate ML-driven systematic uncertainty?
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How to evaluate ML-driven systematic uncertainty?
• To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different JUNOSW generator seed per each exposure
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• To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different JUNOSW generator seed per each exposure
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How to evaluate ML-driven systematic uncertainty?
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• To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different JUNOSW generator seed per each exposure

uncertainties estimated by the fit can be compared with 
the actual variability of the best fit values 

                    13.4

How to evaluate ML-driven systematic uncertainty?
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kB fC LY

                    14.1

Uncertainty on the best fit parameters
Regressor

GAN in the
backup
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kB fC LY

on average the bias is close to 0 and within 
the uncertainties

                    14.2

Uncertainty on the best fit parameters

GAN in the
backup

Regressor
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kB fC LY

uncertainties estimated by the fit represent the actual 
variability of the best fit values

on average the bias is close to 0 and within 
the uncertainties

                    14.3

Uncertainty on the best fit parameters

GAN in the
backup

Regressor
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• Using the testing dataset 1, one can check the bias across different points:

o Run MCMC fits per each testing point of the dataset

o Compare bias with the uncertainty obtained by the previous analysis for the 10k exposure point

o Biases are within the uncertainty

                    14.4

Uncertainty on the best fit parameters
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Summary
• An ML-based method of MC tuning for the JUNO experiment is under development

▪ Multi-output Regressor and GAN are studied

▪ Realistic dataset: full sources simulation

▪ Based on raw number of photo-electrons: no dependence on a reconstruction algorithm

                    15.1
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Summary

• Models' performances quantified: 

▪ uncertainties estimated by the fit represent the actual variability of the best fit values

▪ on average the bias is close to 0 and within the uncertainties

• Regressor:

▪ can retrieve parameters at ~% level kB (2.3%) fC (6.0%) LY (0.20%) with 10k-events

• GAN:

▪ can retrieve parameters at ~% level kB (1.8%) fC (4.8%) LY (0.19%) with 10k-events

• An ML-based method of MC tuning for the JUNO experiment is under development:

▪ Multi-output Regressor and GAN are studied

▪ Realistic dataset: full sources simulation

▪ Based on raw number of photo-electrons: no dependence on a reconstruction algorithm

mostly limited by data sample statistics

                    15.2
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The JUNO detection process

JUNO will measure the antineutrinos ( ҧ𝜈e) 
generated in the fissions occurring in 
8 nuclear cores at 52.5 km

The detection is based on a charged 
current interaction named Inverse 
Beta Decay (IBD) on protons (p)

→ sensitive only to electron ഥ𝝂𝒆

Detection relies on a double coincidence:

• prompt signal: positron (e+) annihilation
• delayed signal: neutron (n) capture

→ strong handle against most backgrounds

ഥ𝝂𝒆 + 𝒑 → 𝒆+ + 𝒏

ത𝝂𝒆

𝒑

𝒏

𝒆+

𝒆+

𝒏

𝒑

𝒆−

𝜸 (0.5 𝑀𝑒𝑉)

𝜸 (0.5 𝑀𝑒𝑉)

𝜸(2.2 𝑀𝑒𝑉)

𝐸𝑒+ ∼ 𝐸ഥ𝜈 − 0.78 𝑀𝑒𝑉

Slide credits A. Serafini



The JUNO detector
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35.4 m

43.5 m

Target mass 
[kton]

Energy 
resolution

Light yield
[PE/MeV]

Daya Bay 0.02 8%/√E 160

Borexino 0.3 5%/√E 500

KamLAND 1 6%/√E 250

JUNO 20 3%/√E ~1600

Main requirements:

• high statistics
→ 20 kton of liquid scintillator acrylic sphere 

• <3% energy resolution @ 1 MeV
→ photocoverage ~78%

• energy-scale systematics below 1%
→ 17612 20" Large-PMT 
→ 25600 3" Small-PMT 

[Prog. Part. Nucl. Phys. 2021.103927]

Slide credits A. Serafini



Detector response: what JUNO actually sees
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interaction light emission light detection

𝑬𝝂 𝑬𝒅𝒆𝒑 𝑬𝒗𝒊𝒔 𝑬𝒓𝒆𝒄
Antineutrino energy Deposited energy Visible energy Reconstructed energy

Calibration campaigns
• automated multiple-position and 

multi-source calibration (link)
• periodic calibration campaigns
• dual-calorimetry system (link)

Energy resolution
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Non-linearity

6 years

Slide credits A. Serafini

https://agenda.infn.it/event/33107/contributions/205087/
https://agenda.infn.it/event/33107/contributions/205095/


Other non-linearities

Detector non-uniformity
The detector response to the same charge deposition 
depends on the position at which the event occurs and 
needs to be properly characterized.

Liquid scintillator non-linearity
Light emission has an intrinsic non-linearity because of:
- Birks’ quenching effect in scintillation photon yield;
- Velocity-dependent Cherenkov emission.
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Calibration of the JUNO detector

Radioactive sources (100-200 Hz) + Laser sources

• 1D: Automatic Calibration Unit (ACU)

• 2D: Cable Loop System (CLS)

• 3D: Remotely Operated under-LS Vehicles (ROV)

• Boundary: Guide Tube Calibration  System (GTCS)

Slide credits D. Basilico

250 calibration points

JHEP 03 (2021) 004



Calibration strategy

Comprehensive calibration (250 points, ~48h)

→ basic understanding of the CD performance

Monthly calibrations (~100 points, ~11h)

→ monitor non-uniformity

Weekly calibrations (~15 points, ~2.4h)

→ track variations in LY of LS, PMT gains, and electronics

Slide credits D. Basilico
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Uncertainty on the best fit parameters
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