This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034319 and from the European Union – NextGenerationEU.

NeuroMCT: Fast Monte Carlo Tuning with Generative Machine Learning in the JUNO Experiment

Arsenii Gavrikov^a on behalf of the JUNO Collaboration University & INFN Padova, Italy; arsenii.gavrikov@pd.infn.it

21/10/2024, Kraków, Poland Conference on Computing in High Energy and Nuclear Physics 2024

Università degli Studi di Padova

Introduction

The JUNO experiment

- Jiangmen Underground Neutrino Observatory (JUNO) [1]:
 - o multi-purpose neutrino experiment located in China
 - o made of **20 kt liquid scintillator (LS), acting both as:**
 - the interaction medium
 - the detection medium
 - o ~78% photo-coverage by **photo-multiplier tubes**
 - o at the latest stage of its construction
- Neutrino energy is measured through calorimetry of final state leptons
- Main goals of JUNO [2, 3]:
 - neutrino mass ordering with 3
 a in ~6-7 years of data-taking
 - sub-percent measurements of the following oscillation parameters: $\sin^2 \theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2$
- The goals require to keep energy-related systematic uncertainties below 1%

[1] JUNO Collaboration 2016 J. Phys. G: Nucl. Part. Phys. 43 030401
[2] JUNO Collaboration 2022 Chinese Phys. C 46 123001
[3] JUNO Collaboration 2024 arXiv:2405.18008

Arsenii Gavrikov (UNI & INFN Padova)

More details in the backup

Physics challenge

- LS emits visible light when ionized by crossing charged particles
- Relation between light detected (NPE) and energy deposited in the LS is described by several parameters [1]
- Tuning these parameters to have JUNO MC matching real data is pivotal to control systematic uncertainties
- We use JUNO calibration campaign to tune the parameters

MC tuning: Adjusting key parameters of the LS in the simulation Monte Carlo (MC) simulation software

[1] JUNO Collaboration 2024 arXiv:2405.17860

Arsenii Gavrikov (UNI & INFN Padova)

*more details in the backup

- The key parameters of the LS to be tuned:
 - o the Birks' constant: **kB** (a material-dependent quenching factor)
 - Cherenkov yield factor: **fC** (an effective parameter to adjust
 Cherenkov light yield)
 - o Scintillation light yield per 1 MeV: LY
- All the parameters are highly correlated and so multiple calibration sources are adopted to break the correlations

- The key parameters of the LS to be tuned:
 - o the Birks' constant: **kB** (a material-dependent quenching factor)
 - Cherenkov yield factor: **fC** (an effective parameter to adjust
 Cherenkov light yield)
 - o Scintillation light yield per 1 MeV: LY
- All the parameters are highly correlated and so multiple
 calibration sources are adopted to break the correlations
- How to tune the parameters?
- Find the set of parameters minimizing distance (chi2, likelihood) between simulated calibration data and a reference dataset
- Best parameter values found **through a fit** (optimizer / sampler)

Number of collected photo-electrons $N_{p,e}$.

JUNO

- How to tune the parameters?
- The most straightforward approach would be...

JUNO

- How to tune the parameters?
- The most straightforward approach would be...

Impractical and slow. Can we replace it with a surrogate model?

Full MC samples with diff. values of parameters

- How effectively and precisely estimate the parameters?
- We propose a fast MC tuning method based on Machine Learning (ML):
 - Use a surrogate model to generate **artificial spectra to be compared with the reference spectra** during the fit

- How effectively and precisely estimate the parameters?
- We propose a fast MC tuning method based on Machine Learning (ML):
 - Use a surrogate model to generate artificial spectra to be compared with the reference spectra during the fit

*represented by amount of light collected

- We propose a fast MC tuning method based on Machine Learning (ML):
 - Use a surrogate model to generate artificial spectra to be compared with the reference spectra during the fit

Able to interpolate in the parameters space

Full MC samples

with **diff. values**

of parameters

Fast ML generator

for diff. values of

parameters

of energy spectra **E***

Training

Real calib. data with: kB_p, fC_p, LY_r

Gen. calib. data with:

 $kB_g fC_g LY_g$

*represented by amount of light collected

- How effectively and precisely estimate the parameters?
- We propose a fast MC tuning method based on Machine Learning (ML):
 - Use a surrogate model to generate **artificial spectra to be compared with the reference spectra** during the fit

*represented by amount of light collected

Arsenii Gavrikov (UNI & INFN Padova)

Full MC samples

with **diff. values**

of parameters

- How effectively and precisely estimate the parameters?
- We propose a fast MC tuning method based on Machine Learning (ML):
 - Use a surrogate model to generate **artificial spectra to be compared with the reference spectra** during the fit

*represented by amount of light collected

Arsenii Gavrikov (UNI & INFN Padova)

Full MC samples

with **diff. values**

of parameters

Data description

-

 JUNO employs sources emitting neutrons and gammas at different energies

Data description

- Each source is deployed alone and it results in an energy spectrum measured in NPE
- Spectra of all sources need to be analyzed simultaneously to grasp LS energy response

How parameters impact the calibration data?

How LS parameters impact the calibration data

LY effect

- kB and fC are fixed:

 kB = 15.45 [g/cm²/GeV]
 fC = 0.525
- LY is varying
- Light yield is the most influential parameter
- All sources are highly affected

Only main peaks are shown

UNO

How LS parameters impact the calibration data

kB effect

- LY and fC are fixed:

 LY = 10100 [1/MeV]
 fC = 0.525
- kB is varying
- kB effect is smaller than LY and anticorrelated with the photo peak
- All sources are affected

Only main peaks are shown

Arsenii Gavrikov (UNI & INFN Padova)

UNO

How LS parameters impact the calibration data

fC effect

- kB and LY are fixed:

 kB = 15.45 [g/cm²/GeV]
 LY = 10100 [1/MeV]
- fC is varying
- fC has **a minor effect** to the spectra
- Cs137 is not affected at all
- Slight effect for Co60 and K40

Only main peaks are shown

Data: training + validation

Data: training + validation

Huge dataset with full MC simulation:

- Discrete grid of the parameters
- Per each of the sources:
 - Cs137; K40; Co60; AmBe; AmC

Training data; 21 points per param, 21³ combinations:

- 1. kB: [6, 6.9, ..., 24]
- 2. fC: [0, 0.05, ..., 1]
- 3. LY: [8000, 8200, ..., 12000]
- For each point **10k events**
- ~600M events in total
- A few millions of CPU hours for the production

LY and kB example

Data: training + validation

Huge dataset with full MC simulation:

- Discrete grid of the parameters
- Per each of the sources:
 - Cs137; K40; Co60; AmBe; AmC
- Training data; 21 points per param, 21³ combinations:
 - 1. kB: [6, 6.9, ..., 24]
 - 2. fC: [0, 0.05, ..., 1]
 - 3. LY: [8000, 8200, ..., 12000]

Validation data; 10 points per param, 10³ combinations:

- 1. kB: [7.35, 9.15, ..., 24)
- 2. fC: [0.075, 0.175, ..., 1)
- 3. LY: [8300, 8700, ..., 12000)

this dataset is used to **validate** the model during training and to **optimize its hyperparameters**...

For each point 10k events

Data: testing datasets

Testing the ML output (I)

Huge dataset with full MC simulation:

- Discrete grid of the parameters
- Per each of the sources:
 - Cs137; K40; Co60; AmBe; AmC

Testing data №1; 10 points per param, 10³ combinations:

- 1. kB:[6.45, 8.25,..., 24)
- 2. fC: [0.025, 0.125, ..., 1)
- 3. LY: [8100, 8500, ..., 12000)

this dataset is used to check the bias of the model across all the points of the grid...

For each point 10k events

Testing the ML output (II)

Huge dataset with full MC simulation:

- Discrete grid of the parameters
- Per each of the sources:
 - o Cs137; K40; Co60; AmBe; AmC

Testing data №2; a single point:

- I. kB: 15.45 [g/cm²/GeV]
- 2. fC: 0.525
- 3. LY: 10100 [1 / MeV]
- Different exposures in numbers of events per source:
 - 1k; 2k; 5k; 10k; 25k
 - 1k datasets with diff. seeds per each exposure

this dataset is used to perform the systematic uncertainty analysis of the model...

Testing the ML output (II)

Testing data №2; a single point:

- 1. kB: 15.45 [g/cm²/GeV]
- 2. fC: 0.525
- 3. LY: 10100 [1 / MeV]

Different exposures in numbers of events per source:

- 1k; 2k; 5k; 10k; 25k
- 1k datasets with diff. seeds per each exposure

 10^{1}

 10^{0}

2000

4000

6000

Raw NPE

8000

10000

ML models

ML models

learns unique mapping between the three parameters and a source type and an event rate λ_{i} in each bin

+ fast and reliable model

- requires pre-defined binning

Multi-output regressor

Aims to directly learn **a mapping** from the parameters and a source type to an event rate **λ**

We use a small Transformer-based model as the Regressor

Conditions: **kB, fC, LY** + source type **S** JUNO

ML models

learns unique mapping between the three parameters and a source type and an event rate λ_i in each bin

Produced spectra is always the same

Models' performance

Regressor performance on calibration spectra

GAN and Regressor performance on calibration spectra

Interpolation with the **GAN** model: smooth in the peaks, struggles in the very low statistics regions

Interpolation with the Regressor model: Smooth and denoised

Parameter estimation

Precision and accuracy of parameter estimation

- Bin-to-bin LogPoisson as the cost function
- Markov-chain Monte Carlo (MCMC) method
- Estimate the kB, fC, LY parameters (using ORSA [1])
- Explores full phase space, provides full posterior
- Parameters estimation for the all sources: combined fit
- Shows correlation between the parameters

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

Precision and accuracy of parameter estimation

- Bin-to-bin LogPoisson as the cost function ٠
- Markov-chain Monte Carlo (MCMC) method ٠
- Estimate the **kB**, **fC**, **LY** parameters (using ORSA [1]) ٠
- Explores full phase space, provides full posterior ٠
- Parameters estimation for the all sources: combined fit ٠

True value: 15.45

Best fit value: 15.54 Fit uncertainty: 1-2-3 σ

Shows correlation between the parameters ٠

ORSA

Density

13

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

17

18

Arsenii Gavrikov (UNI & INFN Padova)

14

15

16

Кĸ

Precision and accuracy of parameter estimation

- Bin-to-bin LogPoisson as the cost function
- Markov-chain Monte Carlo (MCMC) method
- Estimate the kB, fC, LY parameters (using ORSA [1])
- Explores full phase space, provides full posterior
- Parameters estimation for the all sources: combined fit
- Shows correlation between the parameters

[1] A. Serafini, Accelerating Unbinned Likelihood Computations in JUNO with GPU Parallelization (2024)

ORSA Regressor True values Best fit value posteriors 0.6 J 0. 0.4 10200 ۲. ۲ ۲ 1000 14 0.4 0.5 10000 10100 10200 15 16 17 0.6 L. Y. f_C kв Parameters estimation combined: • kB: 15.54 +- 0.35 15.45 [g/cm²/GeV] Ο 10100 [1/MeV] LY: 10112 +- 24 0 fC: **0.499 +- 0.030** 0.525 Ο

Parameter estimation: GAN vs Regressor

Arsenii Gavrikov (UNI & INFN Padova)

٠

- To perform systematic uncertainty estimation analysis, we use the testing dataset 2:
 - Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)
 - o **5 different exposures**: 1k, 2k, 5k, 10k, 25k events
 - o 1000 datasets with different JUNOSW generator seed per each exposure

- To perform systematic uncertainty estimation analysis, we use the testing dataset 2:
 - Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)
 - o 5 different exposures: 1k, 2k, 5k, 10k, 25k events
 - o 1000 datasets with different JUNOSW generator seed per each exposure

- To perform systematic uncertainty estimation analysis, we use the testing dataset 2:
 - Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)
 - o **5 different exposures**: 1k, 2k, 5k, 10k, 25k events
 - o 1000 datasets with different JUNOSW generator seed per each exposure

JUNO

- To perform systematic uncertainty estimation analysis, we use the testing dataset 2:
 - Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)
 - o **5 different exposures**: 1k, 2k, 5k, 10k, 25k events
 - o 1000 datasets with different JUNOSW generator seed per each exposure

Regressor

Regressor

Regressor

- Using the testing dataset 1, one can check the bias across different points:
 - o Run MCMC fits per each testing point of the dataset
 - o Compare bias with the uncertainty obtained by the previous analysis for the 10k exposure point
 - o Biases are within the uncertainty

Summary

Summary

- An ML-based method of MC tuning for the JUNO experiment is under development
 - Multi-output Regressor and GAN are studied
 - Realistic dataset: full sources simulation
 - Based on raw number of photo-electrons: no dependence on a reconstruction algorithm

Summary

- An ML-based method of MC tuning for the JUNO experiment is under development:
 - Multi-output Regressor and GAN are studied
 - Realistic dataset: full sources simulation
 - Based on raw number of photo-electrons: no dependence on a reconstruction algorithm
- Models' performances quantified:
 - uncertainties estimated by the fit represent the actual variability of the best fit values
 - on average the bias is close to 0 and within the uncertainties
- Regressor:
 - can retrieve parameters at ~% level kB (2.3%) fC (6.0%) LY (0.20%) with 10k-events
- GAN:
 - can retrieve parameters at ~% level kB (1.8%) fC (4.8%) LY (0.19%) with 10k-events

mostly limited by data sample statistics

Thank you!

Backup

The JUNO detection process

JUNO will measure the **antineutrinos** ($\bar{\nu}_e$) generated in the fissions occurring in 8 nuclear cores at 52.5 km

The **detection** is based on a charged current interaction named Inverse Beta Decay (**IBD**) on protons (p)

 \rightarrow sensitive only to electron $\overline{\nu}_e$

Detection relies on a **double coincidence**:

- **prompt** signal: positron (e⁺) annihilation
- **delayed** signal: neutron (n) capture
- \rightarrow strong handle against most backgrounds

The JUNO detector

Main requirements:

- high statistics
 - \rightarrow 20 kton of liquid scintillator acrylic sphere
- <3% energy resolution @ 1 MeV
 → photocoverage ~78%
- energy-scale systematics below 1%
 → 17612 20" Large-PMT
 → 25600 3" Small-PMT

	Target mass [kton]	Energy resolution	Light yield [PE/MeV]
Daya Bay	0.02	8%/√E	160
Borexino	0.3	5%/√E	500
KamLAND	1	6%/√E	250
JUNO	20	3%/√E	~1600

[Prog. Part. Nucl. Phys. 2021.103927]

Detector response: what JUNO actually sees

Other non-linearities

Detector non-uniformity

The detector response to the same charge deposition depends on the position at which the event occurs and needs to be properly characterized.

Liquid scintillator non-linearity

Light emission has an intrinsic non-linearity because of:

- Birks' quenching effect in scintillation photon yield;
- Velocity-dependent Cherenkov emission.

source storage

Automatic Calibration Unit

-ROV guide rail

Central cable

Side cable

spool spool

Calibration house

Calibration of the JUNO detector

Radioactive sources (100-200 Hz) + Laser sources

- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System (CLS)

Calibration strategy

Comprehensive calibration (250 points, ~48h)

 \rightarrow basic understanding of the CD performance

Monthly calibrations (~100 points, ~11h)

 \rightarrow monitor non-uniformity

Weekly calibrations (~15 points, ~2.4h)

 \rightarrow track variations in LY of LS, PMT gains, and electronics

JHEP 03 (2021) 004		IEP	03	(20	21)	004
--------------------	--	-----	----	-----	-----	-----

Source	Energy [MeV]	Points
Neutron (Am-C)	2.22	250
Neutron (Am-Be)	4.4	1
Laser	/	10
68 Ge	0.511×2	1
$^{137}\mathrm{Cs}$	0.662	1
^{54}Mn	0.835	1
60 Co	$1.17 {+} 1.33$	1
40 K	1.461	1
Total	/	/

System	Source	Points
ACU	Neutron (Am-C)	27
ACU	Laser	27
CLS	Neutron (Am-C)	40
GT	Neutron (Am-C)	23
Total	/	/

Source	Energy [MeV]	Points
Neutron (Am-C)	2.22	5
Laser	/	10
Total	/	/

