
Declarative paradigms

 for analysis description and implementation

Alberto Annovi, Tommaso Boccali, Paolo Mastrandrea, Andrea Rizzi

(INFN & Università di Pisa)

https://indico.cern.ch/event/1338689/
https://indico.cern.ch/event/1338689/
https://indico.cern.ch/event/1338689/

CHEP2024 21/10/2024

Target: improve (HEP) data analysis tasks

2

Analysis DEVELOPMENT

Speed
fast analysis development

Portability
same analysis for different datasets / experiments

Preservation
reproducibility of the results

Deeper decoupling
between algorithm and implementation

Better scaling
with algorithm complexity and data size

Analysis PERFORMANCE

Flexibility
simple adoption of cutting-edge tools /
languages / submission systems

Parallelization
simple parallelization of the tasks

Optimization
support for automatic (technical) optimization

Declarative paradigms

CHEP2024 21/10/2024

Submission system

Local
Grid
Dask
… ex

am
pl

e

How: framework structure

3

Frontend : Analysis flow
Definition of the task using a
standard set of declarations.

Analysis flow described with a
Directed Acyclic Graph (DAG).

● Select 2 muons
● Get the dimuon invariant
mass distribution

Backend : Processor building
Generation of the analysis
implementation for specific:

● tool / language / system
● dataset / experiment

Input
dataset

RDF processor for NANOAOD samplesexample

example

ProcessorFlow definition
(one JSON file)

CHEP2024 21/10/2024

Submission system

Local
Grid
Dask
… ex

am
pl

e

How: framework structure

4

Frontend : Analysis flow
Definition of the task using a
standard set of declarations.

Analysis flow described with a
Directed Acyclic Graph (DAG).

● Select 2 muons
● Get the dimuon invariant
mass distribution

Backend : Processor building
Generation of the analysis
implementation for specific:

● tool / language / system
● dataset / experiment

Input
dataset

RDF processor for NANOAOD samplesexample

example

ProcessorFlow definition
(one JSON file)

Speed

CHEP2024 21/10/2024

Submission system

Local
Grid
Dask
… ex

am
pl

e

How: framework structure

5

Frontend : Analysis flow
Definition of the task using a
standard set of declarations.

Analysis flow described with a
Directed Acyclic Graph (DAG).

● Select 2 muons
● Get the dimuon invariant
mass distribution

Backend : Processor building
Generation of the analysis
implementation for specific:

● tool / language / system
● dataset / experiment

Input
dataset

RDF processor for NANOAOD samplesexample

example

ProcessorFlow definition
(one JSON file)

Speed

Portability

Preservation

CHEP2024 21/10/2024

Submission system

Local
Grid
Dask
… ex

am
pl

e

How: framework structure

6

Frontend : Analysis flow
Definition of the task using a
standard set of declarations.

Analysis flow described with a
Directed Acyclic Graph (DAG).

● Select 2 muons
● Get the dimuon invariant
mass distribution

Backend : Processor building
Generation of the analysis
implementation for specific:

● tool / language / system
● dataset / experiment

Input
dataset

RDF processor for NANOAOD samplesexample

example

ProcessorFlow definition
(one JSON file)

Speed

Portability

Preservation

Optimization

CHEP2024 21/10/2024

Submission system

Local
Grid
Dask
… ex

am
pl

e

How: framework structure

7

Frontend : Analysis flow
Definition of the task using a
standard set of declarations.

Analysis flow described with a
Directed Acyclic Graph (DAG).

● Select 2 muons
● Get the dimuon invariant
mass distribution

Backend : Processor building
Generation of the analysis
implementation for specific:

● tool / language / system
● dataset / experiment

Input
dataset

RDF processor for NANOAOD samplesexample

example

ProcessorFlow definition
(one JSON file)

Speed

Portability

Preservation

Flexibility

Optimization

Parallelization

CHEP2024 21/10/2024

Demonstrator development

8

● Toolbox supporting declarative approach for HEP analysis

● re-implementation from NAIL (improved modularity)

● stand-alone Python package:

○ DAG handling
○ Sample Processing : event loop definition
○ Interface Dictionary : translation of input naming
○ Backend processors (for event loop):

1. Basic Loop processor (C++ compiled)
2. RDF-based processor (C++ compiled - Multi-thread support)
3. Direct python processor

(Available / Under development)

Multiple-input data formats

Same flow on different-format
datasets (input naming translation)

Supported data-formats:

● NANOAOD (CMS) Full

● PHYSLITE (ATLAS) Preliminary

Full analysis chain

Extend the flow definition to procedure incorporating all the steps
needed to extract the result of a complex analysis task

Extension

Ex
te

ns
io

n

Demonstrator github repository

https://github.com/ICSC-Spoke2-repo/nail-dev

https://github.com/arizzi/nail
https://github.com/ICSC-Spoke2-repo/nail-dev

CHEP2024 21/10/2024

Data-format interface

● In principle 3 equivalent - but in general distinct - data-formats
are involved in an analysis definition:

a. inside the framework for variables manipulation
b. in the description of the algorithm by the user
c. in the encoding of the input data to be processed

● a and b can - in principle - be unified for most applications

● c is experiment dependent : a translation is needed a ↔ c

● Strategy implemented for the demonstrator:

a. Translation via a configurable dictionary tool (Python)

b. Encode all the data-format specific information (and
configurations needed) in a dictionary (JSON file)

9

CHEP2024 21/10/2024

DAG example

10

Input variables

Transformations

Selection/requirement

Variable (defined only
if selection is true)

Event weights
(defined per-event)

Region weight
(defined per-event - incorporates
all the event weights for a region)

Regions are automatically
defined according to the
set of valid selections
(names from hash code)

Target (output
required for a task)

CHEP2024 21/10/2024

Definition set example

11

Example of a set of definitions for an “event loop” analysis flow

Define define a new variable based on available inputs

SubCollection define all the variables in a collection for selected candidates

Distinct define pairs from a collection

TakePair define a specific pair from a set of pairs from “Distinct” definition

ObjectAt define an object from a collection (specific index)

Selection define a selection (T/F value) - “Regions” as a group of Selections

DefineEventWeight define a multiplicative event weight - applied for events in a region

DefineHisto1D define a 1D histogram

To be added: definitions for handling of systematic uncertainties

CHEP2024 21/10/2024

Example code - flow

● Definition of tools/base variables

● Selection of 2 opposite-charge muons

● Evaluation of the dimuon invariant mass

● Definition of 2 regions:

○ Leading-muon eta > 0

○ Leading-muon eta <= 0

● Distributions:

○ # selected muons

○ dimuon invariant mass

○ Leading-muon p_T (per region)

○ Leading-muon eta (per region)

● Generate the processor & run

12

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

13

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

● Selection of 2 opposite-charge muons

14

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

● Selection of 2 opposite-charge muons

● Evaluation of the dimuon invariant mass

15

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

● Selection of 2 opposite-charge muons

● Evaluation of the dimuon invariant mass

● Definition of 2 regions:

○ Leading-muon eta > 0

○ Leading-muon eta <= 0

16

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

● Selection of 2 opposite-charge muons

● Evaluation of the dimuon invariant mass

● Definition of 2 regions:

○ Leading-muon eta > 0

○ Leading-muon eta <= 0

● Distributions:

○ # selected muons

○ dimuon invariant mass

○ Leading-muon p_T (per region)

○ Leading-muon eta (per region)

17

CHEP2024 21/10/2024

Event-loop DAG

18

CHEP2024 21/10/2024

Example code - flow

● Definition of tools and first derived vars

● Selection of 2 opposite-charge muons

● Evaluation of the dimuon invariant mass

● Definition of 2 regions:

○ Leading-muon eta > 0

○ Leading-muon eta <= 0

● Distributions:

○ # selected muons

○ dimuon invariant mass

○ Leading-muon p_T (per region)

○ Leading-muon eta (per region)

● Generate the processor & run

19

CHEP2024 21/10/2024

Example code - processor

Loop processor code generated from the
flow described in the previous slides

Code structure:

1. Functions declarations (for all derived
variables)

2. Processing tool function declaration
a. TTree access (via TTreeReader)
b. Variables declarations (input and

derived)
c. Loop over events:

i. Variables initialization
ii. Input variable reading

iii. Derived variables evaluation

d. Get the results!

20
//… = similar lines omitted

CHEP2024 21/10/2024

Example code - processor

Loop processor code generated from the
flow described in the previous slides

Code structure:

1. Functions declarations (for all derived
variables)

2. Processing tool function declaration
a. TTree access (via TTreeReader)
b. Variables declarations (input and

derived)
c. Loop over events:

i. Variables initialization
ii. Input variable reading

iii. Derived variables evaluation

d. Get the results!

21
//… = similar lines omitted

CHEP2024 21/10/2024

Example code - processor

Loop processor code generated from the
flow described in the previous slides

Code structure:

1. Functions declarations (for all derived
variables)

2. Processing tool function declaration
a. TTree access (via TTreeReader)
b. Variables declarations (input and

derived)
c. Loop over events:

i. Variables initialization
ii. Input variable reading

iii. Derived variables evaluation

d. Get the results!

22
//… = similar lines omitted

CHEP2024 21/10/2024

NANOAOD - processor Loop

23

CMS OpenData: https://opendata.cern.ch/record/75482 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 1.070.000 events

https://opendata.cern.ch/record/75482
https://opendata.cern.ch/record/75482/files/assets/cms/mc/RunIISummer20UL16NanoAODv9/ZToMuMu_M-50To120_TuneCP5_13TeV-powheg-pythia8/NANOAODSIM/106X_mcRun2_asymptotic_v17-v1/260000/DA1BF301-762C-5048-A9EB-AB534069FB4B.root

CHEP2024 21/10/2024

NANOAOD - processor RDF

24

CMS OpenData: https://opendata.cern.ch/record/75482 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 1.070.000 events

https://opendata.cern.ch/record/75482
https://opendata.cern.ch/record/75482/files/assets/cms/mc/RunIISummer20UL16NanoAODv9/ZToMuMu_M-50To120_TuneCP5_13TeV-powheg-pythia8/NANOAODSIM/106X_mcRun2_asymptotic_v17-v1/260000/DA1BF301-762C-5048-A9EB-AB534069FB4B.root

CHEP2024 21/10/2024

PHYSLITE - processor RDF

25

ATLAS OpenData: https://opendata.cern.ch/record/80010 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 160.000 events

Same analysis flow definition respect to CMS NANOAOD sample - but no requirements on muon quality.

https://opendata.cern.ch/record/80010
https://opendata.cern.ch/record/80010/files/assets/atlas/rucio/mc20_13TeV/DAOD_PHYSLITE.37621409._000041.pool.root.1

CHEP2024 21/10/2024

Performance

● Qualitative comparison (OpenData & typical 2023 laptop):

a. Analysis flow definition

b. Backend (C++) generation & compilation

c. Execution in a Python session

26

processor
NANOAOD (1M events) PHYSLITE (160k events)

t(a+b+c) [s] t(c) [s] t(a+b+c) [s] t(c) [s]

Loop 14.7 6.9 10.5 2.6

RDF 14.0 6.1 10.1 2.1

RDF (8 threads) 10.5 3.2 9.8 2.4

Plain Loop more readable than RDF / RDF ~30% faster processing

NANOAOD sample:
CMS OpenData: https://opendata.cern.ch/record/75482 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 1.070.000 events

PHYSLITE sample:
ATLAS OpenData: https://opendata.cern.ch/record/80010 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 160.000 events

https://opendata.cern.ch/record/75482
https://opendata.cern.ch/record/75482/files/assets/cms/mc/RunIISummer20UL16NanoAODv9/ZToMuMu_M-50To120_TuneCP5_13TeV-powheg-pythia8/NANOAODSIM/106X_mcRun2_asymptotic_v17-v1/260000/DA1BF301-762C-5048-A9EB-AB534069FB4B.root
https://opendata.cern.ch/record/80010
https://opendata.cern.ch/record/80010/files/assets/atlas/rucio/mc20_13TeV/DAOD_PHYSLITE.37621409._000041.pool.root.1

CHEP2024 21/10/2024

Extension to full analysis chain

● Example of a full analysis chain (dummy-style calibration task):

○ Sample preparation

○ Event Loop (NAIL - fully re-implemented now)

○ Snapshot/data reduction

○ Combination / comparison of distributions

○ Statistical analysis / Extraction of results

○ Selective / incremental execution

● Target:

○ Definition and implementation of the full analysis chain via declarative tools

○ Improved result preservation

○ Automatic optimization

27
Example: (over-) simplified energy calibration scheme

CHEP2024 21/10/2024

Summary

● The application of (more) declarative paradigm in analysis description

and implementation can boost

○ DEVELOPMENT : Speed, Portability, Preservation

○ PERFORMANCE : Flexibility, Parallelization, Optimization

● Demonstrator in development

○ implements core features and handles for extensions

○ two main extensions:

■ data-format interface (different experiments)

■ full analysis chain (expanded tasks)

○ will benefit from cutting-edge HW technologies and community feedback

for test and optimization phases

28

Backup

CHEP2024 21/10/2024

Analysis paradigm: declarative vs imperative

● These is a correlation between the paradigm used for the description of the analysis algorithm and the
programming paradigm used for its implementation in a software program.

30

● So far mainly imperative paradigms have been used for analysis description and implementation
○ More straightforward application for “simple” tasks and linear/serial tools

● What has changed in the last decade?
○ HW : parallelism/multithreading
○ SW : more expressive programming languages (Python, C++ 17/20/23)
○ Tasks : increased complexity, increased data size (analyses, combinations)

(from Wikipedia)

https://en.wikipedia.org/wiki/Programming_paradigm

CHEP2024 21/10/2024

PHYSLITE - processor Loop

31

ATLAS OpenData: https://opendata.cern.ch/record/80010 (root file)
Simulated Z ➛μμ for pp collisions @ 13 TeV - 160.000 events

Same analysis flow definition respect to CMS NANOAOD sample - but no requirements on muon quality.

https://opendata.cern.ch/record/80010
https://opendata.cern.ch/record/80010/files/assets/atlas/rucio/mc20_13TeV/DAOD_PHYSLITE.37621409._000041.pool.root.1

CHEP2024 21/10/2024

NAIL (Natural Analysis Implementation Language)

● “NAIL is an analysis language that should allow to define in an abstract way a data analysis of a typical HEP

experiment such as CMS or ATLAS. NAIL assumes an input data model for the event to process (...) and allow to

specify the event by event processing actions in a declarative form. Analysis variations for optimizations and

systematics do not need to be explicitly coded but are automatically derived from the event processing

computational graph. Currently ROOT's RDataFrame is used as backend for a concrete implementation of the

event processing as it allows parallelization and lazy evaluation.” (from the README file of the NAIL package)

● Developed in the CMS collaboration, main developer Andrea Rizzi

● Based on CMS’ nanoAOD (columnar) data format, written in Python, heavy lift in C++ (RDataFrame)

32

https://github.com/arizzi/nail

CHEP2024 21/10/2024

AoS vs SoA

● From Wikipedia : “In computing, an array of structures (AoS), structure of arrays (SoA) … are

contrasting ways to arrange a sequence of records in memory, with regard to interleaving, and are of

interest in SIMD and SIMT programming.”

 AoS SoA

● CMS: SoA (e.g. nanoAOD)

● ATLAS: AoS interface with SoA memory storage (e.g. xAOD, PHYSLITE)

33

CHEP2024 21/10/2024

Where the increased speed comes from?

● RVec

○ “A "std::vector"-like collection of values implementing handy operation to analyse them.”

○ Documentation

○ Optimized for speed

○ Its storage is contiguous in memory

○ Automatic internal loop

34

https://root.cern/doc/master/classROOT_1_1VecOps_1_1RVec.html

CHEP2024 21/10/2024

Where the increased speed comes from?

● RDataFrame

○ “ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree , CSV and
other data formats, in C++ or Python.

In addition, multi-threading and other low-level optimizations allow users to exploit all the resources
available on their machines completely transparently.”

○ Documentation

○ Optimized for speed

○ Lazy evaluation and automatic internal loop

35

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

