ML-based classification of photons for direct photon measurement in ALICE

CHEP 2024, Kraków 22nd October 2024

Abhishek Nath for the ALICE collaboration Heidelberg University

Introduction: Direct Photons

Photons are produced in all stages of collision

Direct photons (**signal**) is indistinguishable from Decay photon **(background)** and hence traditionally statistical approach is used to subtract background from inclusive photons

Abhishek Nath, Heidelberg University

Direct photons Plot community of the Chun Shen Plot from Chun Shen

Standard analysis: Photon Conversion Method $\sigma_{\rm e}$ dE/dx TPC

track

 $+$ track

fiducial zone

primary vertex

ALI-SIMUL-586398

This leaves room for ML to improve sample

LICE Simulation

 p_{e} (GeV/c)

 $\sqrt{s_{_{NN}}}$ = 5.02 TeV

Pb-Pb 0-10%

MC True

Standard analysis uses these features and implements rectangular cuts in a single or 2D feature space (Standard **cut**)

θ_{pointing} : **purity and efficiency** angle between the two lines labelled P and R

DCA

Abhishek Nath, Heidelberg University

TPC

ITS

cross section

 \times 10⁻³

 -0.25

3

Feature space Antisaucuse Antisaucuse 1986

Abhishek Nath, Heidelberg University

Some differ more, others less

Motivation

Upper limits (90% CL) are given where γ_{direct} is consistent with 0

Reduction of systematic uncertainties is essential for obtaining a significant result.

Can ML algorithms bring an improvement?

Photon training setup

Signal (y) => **kind** = 0 **Background => kind != 0**

test_size=0.3,

kind : target variable defined based on MC truth, classifying photons according to their sources.

Training in $p_{\rm T}$ bins and centrality 0-10%

 $Signal = Primary photons (kind 0)$ Background = Combinatorial unassociated pairs $(kind = 1)$ Secondary photons (kind $= 5$), Dalitz decay (kind $=$ 3) etc

Abhishek Nath, Heidelberg University **Train+Test on MC only**

Photon training **8 8 and details**

Various XGB models based on BDT output score cuts are tested to find optimal efficiency and purity combination

Abhishek Nath, Heidelberg University

Feature importance

Importance as such not surprising, but are there correlations?

Abhishek Nath, Heidelberg University

Results

Efficiency & purity across BDT

higher purity and efficiency achieved for $p_T < 4$ GeV/*c* compared to cut based analysis

Abhishek Nath, Heidelberg University MC only

Pion efficiency comparison across BDT

Pion efficiency using the converted photons selected by the XGB model.

Significant improvement over large p_{τ} range [from 2 GeV/*c* and above]

Results 12

XGB on neutral meson

Large imbalance in the signal (π^0) with respect to background (γγ pairs).

The imbalance comes mainly because of lack of MC

Afer retraining with class-weights

Summary and outlook **Countries and Summary and Supersy Assumed Summary and Outlook**

- \bullet Standard analysis suggest purity and efficiency to be one of the top contributor for systematic uncertainties
- \bullet An improved efficiency and purity combination is achieved for converted photons at p_{π} < 4 GeV/ c which will reduce the error estimates for direct photons in similar p_T range. Work on this is ongoing
- \bullet A significant increase in meson efficiency is also found from 2 GeV/ c onwards
- **•** The current focus is to look for higher efficiency and purity at high p_{π} region using XGB models at photon level and at meson level. Results for 30-50% centrality are also being explored. Beside XGB, incorporating other models in the analysis are also being explored

15 **Backup**

Backups

Abhishek Nath, Heidelberg University

Features description:

 $q_T = p_e \times \sin(\theta_{v0,e})$: Transverse projection of daughter particle (e $^{+\!/_{\text{-}}}$) momentum to mother particle candidate (V $_{0}$) a.k.a. secondary vertex

 \mathbf{n} = Pseudorapidity of V^0 and tracks

 $\Psi_{\text{pair}} = \arcsin(\Delta\theta/\xi_{\text{pair}}):$ Angle between the plane of the electron and positron pair and the bending plane of the magnetic field

 $\Delta \theta = \theta_{e^-} - \theta_{e^+}$ (polar) $\xi_{\text{pair}} = \arccos[(\vec{p}_{e^-} \cdot \vec{p}_{e^+})/(|\vec{p}_{e^-}| \cdot |\vec{p}_{e^+}|)]$ ⃗ ⃗

 Φ = angle between the x (left) and y-axis (up), counts clockwise along the beam direction of V^0

Abhishek Nath, Heidelberg University

Backup

Features description:

Conversion Radius : line connecting primary vertex to secondary vertex $(\rm V^0)$

 $cos(\theta_{pointing})$: angle between the total momentum of the track pair and the line connecting primary and secondary vertex

χ2 /ndf :

associated with reconstruction algorithm, based on the Kalman filter $(\chi^2,$ no. of degrees of freedom == ndf)

Photon track quality :

both tracks are TPC only one track is TPC only $= 2$ both track have more than 1 ITS cluster $==$ 3 **Backup**

Features description:

TPC [Pos/Neg]/Findable cluster :

associated TPC clusters over the total number of theoretically findable clusters of a [pos/neg] track

ITS/TPC dEdX = $n\sigma$ of the ITS/TPC signal TOF = $n\sigma$ of TOF signal

 $\alpha = (p_{L}^{e^{+}} - p_{L}^{e^{-}})/(p^{e^{+}} + p^{e^{-}}):$ longitudinal momentum asymmetry between the secondary tracks

DCA P ex $\mathbf{r}_{\mathbf{r}}^{\mathbf{r}}$. $\mathbf{r}_{\mathbf{r}}^{\mathbf{r}}$. The set approach between V 0 and primary vertex (radially) **:**

```
P^{\text{e+}} asymmetry = p^{\text{e+}}/p :
ratio of positive track momentum to net track pair momentum
```
Abhishek Nath, Heidelberg University

Backup