ML-based classification of photons for direct photon measurement in ALICE

CHEP 2024, Kraków 22nd October 2024

Abhishek Nath for the ALICE collaboration Heidelberg University

Introduction: Direct Photons

Photons are produced in all stages of collision

Introduction

Direct photons (signal) is indistinguishable from Decay photon (background) and hence traditionally statistical approach is used to subtract background from inclusive photons

Abhishek Nath, Heidelberg University

Direct photons

Standard analysis: **Photon Conversion** Method

σ_e d*E*/dx TPC track fiducial zone + track ITS LICE Simulation vs_{NN} = 5.02 TeV Pb-Pb 0-10% cross section MC True DCA 10 p_e. (GeV/*c*) ALI-SIMUL-586398 primary vertex This leaves room for ML to improve sample purity and efficiency θ_{pointing} :

angle between the two lines labelled P and R

Abhishek Nath, Heidelberg University

TPC

×10⁻³

0.25

Standard analysis uses these features and implements rectangular cuts in a single or 2D feature space (Standard cut)

Feature space

 10^{-1}

 10^{-3}

10²

 10^{-1}

10⁻²

10-5 -

 10^{-1}

 10^{-4}

 10^{-1}

10-3

10-5

0

Abhishek Nath, Heidelberg University

Some differ more, others less

4

Motivation

Upper limits (90% CL) are given where γ_{direct} is consistent with 0

Introduction

Reduction of systematic uncertainties is essential for obtaining a significant result.

Can ML algorithms bring an improvement?

Setup and details

6

Photon training setup

=> kind = 0 Signal (y) Background =>

kind != 0

test_size=0.3,

kind : target variable defined based on MC truth, classifying photons according to their sources.

Training in p_{τ} bins and centrality 0-10%

Signal = Primary photons (kind 0) Background = Combinatorial unassociated pairs (kind = 1) Secondary photons (kind = 5), Dalitz decay (kind = 3) etc

PRODUCTION	GENERATOR /	N_TrueGamma	N_Event
NAME	DESCRIPTION	0-10%	0-10%
LHC 20e3a	HIJING MB	0.2M	~ 3M
LHC 20e3b	HIJING 0-10	~5M	~55M
LHC 24a1	HIJING + custom flat $p_{\rm T}$	~16.5M	~21M

Abhishek Nath, Heidelberg University

Train+Test on MC only

Photon training

Various XGB models based on BDT output score cuts are tested to find optimal efficiency and purity combination

Abhishek Nath, Heidelberg University

8

Setup and details

Feature importance

Importance as such not surprising, but are there correlations?

Results

Efficiency & purity across BDT

higher purity and efficiency achieved for p_{τ} < 4 GeV/*c* compared to cut based analysis

Abhishek Nath, Heidelberg University

1

Results

MC only

Pion efficiency comparison across BDT

Pion efficiency using the converted photons selected by the XGB model.

Significant improvement over large *p*_T range [from 2 GeV/*c* and above]

MC only

12

Results

XGB on neutral meson

$p_{_{\mathrm{T}}} \mathrm{GeV}/c$	0-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-3.0	3.0-5.0	5.0-10.0
Signal (MC)	43	1396	1037	1620	1026	574	181
Background (data)	167977	174189	174189	543711	60676	7659	658
factor	~3948	~1203	~168	~335	~59	~13	~6

Large imbalance in the signal (π^0) with respect to background ($\gamma\gamma$ pairs).

The imbalance comes mainly because of lack of MC

Results

After retraining with class-weights

Summary and outlook

- Standard analysis suggest purity and efficiency to be one of the top contributor for systematic uncertainties
- An improved efficiency and purity combination is achieved for converted photons at $p_T < 4$ GeV/c which will reduce the error estimates for direct photons in similar p_T range. Work on this is ongoing
- A significant increase in meson efficiency is also found from 2 GeV/*c* onwards
- The current focus is to look for higher efficiency and purity at high p_T region using XGB models at photon level and at meson level. Results for 30-50% centrality are also being explored. Beside XGB, incorporating other models in the analysis are also being explored

Outlook

Backup 15

Backups

Features description:

 $q_{T} = p_{e} x \sin(\theta_{v0, e})$: Transverse projection of daughter particle (e^{+/-}) momentum to mother particle candidate (V₀) a.k.a. secondary vertex

 η = Pseudorapidity of V⁰ and tracks

 $\psi_{pair} = \arcsin(\Delta \theta / \xi_{pair})$: Angle between the plane of the electron and positron pair and the bending plane of the magnetic field

 $\begin{array}{l} \Delta \theta = \theta_{e^-} - \theta_{e^+} (\text{polar}) \\ \xi_{\text{pair}} = \arccos[(\vec{p}_{e^-} \cdot \vec{p}_{e^+}) / (|p_{e^-}| \cdot |p_{e^+}|)] \end{array}$

 Φ = angle between the x (left) and y-axis (up), counts clockwise along the beam direction of V⁰

Backup

Features description:

Conversion Radius : line connecting primary vertex to secondary vertex (V⁰)

 $\cos(\theta_{pointing})$: angle between the total momentum of the track pair and the line connecting primary and secondary vertex

χ^2/ndf :

associated with reconstruction algorithm, based on the Kalman filter (χ^2 , no. of degrees of freedom == ndf)

Photon track quality :

both tracks are TPC only==1one track is TPC only==2both track have more than 1 ITS cluster==3

Backup

Features description:

TPC [Pos/Neg]/Findable cluster :

associated TPC clusters over the total number of theoretically findable clusters of a [pos/neg] track

ITS/TPC dEdX = $n\sigma$ of the ITS/TPC signal **TOF** = $n\sigma$ of TOF signal

 $\alpha = (\mathbf{p_L}^{e_+} - \mathbf{p_L}^{e_-})/(\mathbf{p}^{e_+} + \mathbf{p}^{e_-})$: longitudinal momentum asymmetry between the secondary tracks

 $\mathbf{DCA}_{\mathbf{r}}$: distance of closest approach between V⁰ and primary vertex (radially)

```
P<sup>e+</sup> asymmetry = p<sup>e+</sup>/p :
ratio of positive track momentum to net track pair momentum
```

Abhishek Nath, Heidelberg University

Backup