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What is Python’s Global Interpreter Lock (GIL)?
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What is Python’s Global Interpreter Lock (GIL)?

In pseudocode:

pthread_mutex_lock(&global_interpreter_lock);

PyEval(python_bytecode_instruction);

pthread_mutex_unlock(&global_interpreter_lock);
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What is Python’s Global Interpreter Lock (GIL)?

https://github.com/zpoint/CPython-Internals/blob/master/
Interpreter/gil/gil.md
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Python 3.13.0 was released 16 days ago.

It adds two new ways to avoid the GIL.
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Method #1: subinterpreters
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Method #1: subinterpreters
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multithreading
all threads can see each other's data

one shared GC & GIL

multiple interpreters
each interpreter has its own GC & GIL

looks like one process to the OS
can share array buffers, but not PyObjects

multiprocessing
multiple OS processes

can't share anything without serializing
(or using OS-specific SharedMemory)

Pre-3.13 trade-off: shared memory + GIL in multithreading or shared-nothing +
true parallel-processing in multiprocessing. Now we have an in-between option.
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It is now possible, but not easy, to use subinterpreters in Python

from test.support import interpreters
from test.support.interpreters import queues

def in_subinterp():
# Need to re-import; this is in its own little world...
from test.support.interpreters import queues

in_queue = Queue(in_id) # in_id comes from global scope
out_queue = Queue(out_id) # out_id comes from global scope

x = queue.get()
out_queue.put(x + number) # number comes from global scope

in_queue = queues.create()
out_queue = queues.create()

subinterp = interpreters.create()
subinterp.prepare_main({"in_id": in_queue.id, "out_id": out_queue.id, "number": 42})
subinterp.call_in_thread(in_subinterp)

in_queue.put(100)
assert out_queue.get() == 142
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Very little support from libraries

Many libraries, like NumPy, can’t be used in subinterpreters yet.

(NumPy just seg-faults!)
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Method #2: free-threading
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Method #2: free-threading

cd Python-3.13.0/
./configure --disable-gil
make
make install

Free-threaded Python is a separate ABI, “cp313t”, rather than “cp313”.

Compiled extensions have to explicitly opt-in.
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Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27



Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27



Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27



Why is it working now?

The main issue was CPython’s ubiquitous reference counting. Replacing

((PyObject*)(obj))->ob_refcnt++;

with an atomic operation (or similar) is expensive because it is called so often.

J. Choi, T. Shull, J. Torrellas, Biased reference counting: minimizing atomic
operations in garbage collection, PACT’18 (DOI 10.1145/3243176.3243195).

Most objects are only referenced by the thread in which they were created.

struct PyObject {
  ...
  uint32_t   ob_ref_local;
  Py_ssize_t ob_ref_shared;
  ...
};

local reference counter,
freely mutated by thread

shared reference counter,
carefully guarded
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Also. . . https://peps.python.org/pep-0703

▶ no reference counting of immortal objects: None, True, False, small
integers, interned strings. . .

▶ deferred reference counting: top-level functions, code objects, modules,
methods tend to be accessed by many threads; don’t reference count, only
garbage collect

▶ replacing PyMalloc (for small Python objects) with mimalloc

▶ no linked lists in garbage collecting

▶ no more generational garbage collecting (reference counting handles
short-lived objects)

▶ locks on all mutable containers (lists, dicts) with optimistic access

▶ alternatives to borrowed references in C (PyList_GetItem →
PyList_FetchItem)

▶ “critical sections” in bytecode sequences to avoid deadlocks
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Scaling tests
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Something computationally expensive in pure Python

# Can't use NumPy in subinterpreters, so use Python's built-in array instead.
offsets = (ctypes.c_int64 * (N + 1)).from_address(ptr_offsets)
pt = (ctypes.c_float * offsets[-1]).from_address(ptr_pt)
eta = (ctypes.c_float * offsets[-1]).from_address(ptr_eta)
phi = (ctypes.c_float * offsets[-1]).from_address(ptr_phi)
mass = (ctypes.c_float * N).from_address(ptr_mass)

# Dimuon mass on all combinations of muons per event...
for event in range(start, stop):

max_mass = 0
for i in range(offsets[event], offsets[event + 1]):

pt1 = pt[i]
eta1 = eta[i]
phi1 = phi[i]
for j in range(i + 1, offsets[event + 1]):

pt2 = pt[j]
eta2 = eta[j]
phi2 = phi[j]
m = sqrt(2*pt1*pt2*(cosh(eta1 - eta2) - cos(phi1 - phi2)))
if m > max_mass:

max_mass = m
mass[event] = max_mass
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Scaling test results (8 physical cores)

Subinterpreters and
free-threading both
escape single-thread
scaling limit.
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Scaling test results (8 physical cores)

Free-threading
doesn’t have all the
latest optimizations;
single-threaded is
slower (for now).
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Scaling test results (8 physical cores)

In fact, it’s a
constant factor.
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CPUs are constantly busy, even though scaling isn’t perfect

16 / 27



CPUs are constantly busy, even though scaling isn’t perfect

For a pure Python, computationally intensive workload like this,
the GIL strictly limits available threads to 1.
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Can we go further? (48 physical cores)

The hyperthreading
threshold doesn’t
look significant on
this hardware (AWS
c7i.metal-48xl).
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Not all threads finish equal work in equal times
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Scaling tests with Uproot
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Uproot has already been (partly) evading the GIL

Most computationally intensive work is offloaded to NumPy and Awkward Array,
which release the GIL before numerical computations.

Py_BEGIN_ALLOW_THREADS; // releases the GIL

big_computation_without_PyObjects(); // other threads run, too

Py_END_ALLOW_THREADS; // re-acquires the GIL

return result_with_PyObjects;

But we only enter GIL-released C code on a per-TBasket basis.

The code between these excursions are synchronization points (Amdahl’s law).
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Two ways to parallelize Uproot

“External”: some code that controls threading (e.g. Dask) calls Uproot

def in_thread(uproot_tree, start, stop):
return uproot_tree.arrays(entry_start=start, entry_stop=stop)

executor = ThreadPoolExecutor(max_workers=N)
batches = executor.map(in_thread, list_of_args_tuples)

“Internal”: Uproot reads TBaskets in parallel but returns one array

executor = ThreadPoolExecutor(max_workers=N)

array = uproot_tree.arrays(
decompression_executor=executor, interpretation_executor=executor

)
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Parallelizing Uproot “externally”

GIL-bound is not
bad, but there’s a
small improvement.

The bigger
difference is
between the default
file handler and
MemmapSource.
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Parallelizing Uproot “internally”

GIL-bound is not
bad, but there’s a
small improvement.

Especially in the
internal case (more
fine-grained; less
waste from multiple
threads reading the
same TBaskets).
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CPUs are not always busy, but free-threaded is busier. . .

Note: file-reading tasks performed with warm cache, so RAM → CPU is the only I/O.
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Can we go further? (48 physical cores, “internal” parallelization)

Free-threading
starts to be relevant
above 8 threads and
keeps getting better
until 3 GB/second.

You need well over
8 cores to see this.
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CPUs are still not always busy, but free-threaded is busier. . .
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Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.
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