
GIL-free scaling of Uproot in Python 3.13

Jim Pivarski

Princeton University – IRIS-HEP

October 23, 2024

1 / 27

What is Python’s Global Interpreter Lock (GIL)?

2 / 27

What is Python’s Global Interpreter Lock (GIL)?

2 / 27

What is Python’s Global Interpreter Lock (GIL)?

2 / 27

What is Python’s Global Interpreter Lock (GIL)?

In pseudocode:

pthread_mutex_lock(&global_interpreter_lock);

PyEval(python_bytecode_instruction);

pthread_mutex_unlock(&global_interpreter_lock);

2 / 27

What is Python’s Global Interpreter Lock (GIL)?

https://github.com/zpoint/CPython-Internals/blob/master/
Interpreter/gil/gil.md

2 / 27

https://github.com/zpoint/CPython-Internals/blob/master/Interpreter/gil/gil.md
https://github.com/zpoint/CPython-Internals/blob/master/Interpreter/gil/gil.md

Python 3.13.0 was released 16 days ago.

It adds two new ways to avoid the GIL.

3 / 27

Python 3.13.0 was released 16 days ago.

It adds two new ways to avoid the GIL.

3 / 27

Method #1: subinterpreters

4 / 27

Method #1: subinterpreters

interpreter

thread
queue

interpreter

thread

interpreter

thread

interpreter

thread

interpreter

thread

interpreter

thread

process

interpreter

thread

process

thread

thread thread

thread thread

process

interpreter
queue process

interpreter

process

interpreter

process

interpreter

process

interpreter

process

interpreter

multithreading
all threads can see each other's data

one shared GC & GIL

multiple interpreters
each interpreter has its own GC & GIL

looks like one process to the OS
can share array buffers, but not PyObjects

multiprocessing
multiple OS processes

can't share anything without serializing
(or using OS-specific SharedMemory)

Pre-3.13 trade-off: shared memory + GIL in multithreading or shared-nothing +
true parallel-processing in multiprocessing. Now we have an in-between option.

5 / 27

Method #1: subinterpreters

interpreter

thread
queue

interpreter

thread

interpreter

thread

interpreter

thread

interpreter

thread

interpreter

thread

process

interpreter

thread

process

thread

thread thread

thread thread

process

interpreter
queue process

interpreter

process

interpreter

process

interpreter

process

interpreter

process

interpreter

multithreading
all threads can see each other's data

one shared GC & GIL

multiple interpreters
each interpreter has its own GC & GIL

looks like one process to the OS
can share array buffers, but not PyObjects

multiprocessing
multiple OS processes

can't share anything without serializing
(or using OS-specific SharedMemory)

Pre-3.13 trade-off: shared memory + GIL in multithreading or shared-nothing +
true parallel-processing in multiprocessing. Now we have an in-between option.

5 / 27

It is now possible, but not easy, to use subinterpreters in Python

from test.support import interpreters
from test.support.interpreters import queues

def in_subinterp():
Need to re-import; this is in its own little world...
from test.support.interpreters import queues

in_queue = Queue(in_id) # in_id comes from global scope
out_queue = Queue(out_id) # out_id comes from global scope

x = queue.get()
out_queue.put(x + number) # number comes from global scope

in_queue = queues.create()
out_queue = queues.create()

subinterp = interpreters.create()
subinterp.prepare_main({"in_id": in_queue.id, "out_id": out_queue.id, "number": 42})
subinterp.call_in_thread(in_subinterp)

in_queue.put(100)
assert out_queue.get() == 142

6 / 27

Very little support from libraries

Many libraries, like NumPy, can’t be used in subinterpreters yet.

(NumPy just seg-faults!)

7 / 27

Very little support from libraries

Many libraries, like NumPy, can’t be used in subinterpreters yet.

(NumPy just seg-faults!)

7 / 27

Method #2: free-threading

8 / 27

Method #2: free-threading

cd Python-3.13.0/
./configure --disable-gil
make
make install

Free-threaded Python is a separate ABI, “cp313t”, rather than “cp313”.

Compiled extensions have to explicitly opt-in.

9 / 27

Method #2: free-threading

cd Python-3.13.0/
./configure --disable-gil
make
make install

Free-threaded Python is a separate ABI, “cp313t”, rather than “cp313”.

Compiled extensions have to explicitly opt-in.

9 / 27

Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27

Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27

Free-threaded Python has been discussed for a long time

Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.

Until recently, they all made single (and sometimes multi) threaded performance worse.

10 / 27

Why is it working now?

The main issue was CPython’s ubiquitous reference counting. Replacing

((PyObject*)(obj))->ob_refcnt++;

with an atomic operation (or similar) is expensive because it is called so often.

J. Choi, T. Shull, J. Torrellas, Biased reference counting: minimizing atomic
operations in garbage collection, PACT’18 (DOI 10.1145/3243176.3243195).

Most objects are only referenced by the thread in which they were created.

struct PyObject {
 ...
 uint32_t ob_ref_local;
 Py_ssize_t ob_ref_shared;
 ...
};

local reference counter,
freely mutated by thread

shared reference counter,
carefully guarded

11 / 27

https://doi.org/10.1145/3243176.3243195

Why is it working now?

The main issue was CPython’s ubiquitous reference counting. Replacing

((PyObject*)(obj))->ob_refcnt++;

with an atomic operation (or similar) is expensive because it is called so often.

J. Choi, T. Shull, J. Torrellas, Biased reference counting: minimizing atomic
operations in garbage collection, PACT’18 (DOI 10.1145/3243176.3243195).

Most objects are only referenced by the thread in which they were created.

struct PyObject {
 ...
 uint32_t ob_ref_local;
 Py_ssize_t ob_ref_shared;
 ...
};

local reference counter,
freely mutated by thread

shared reference counter,
carefully guarded

11 / 27

https://doi.org/10.1145/3243176.3243195

Why is it working now?

The main issue was CPython’s ubiquitous reference counting. Replacing

((PyObject*)(obj))->ob_refcnt++;

with an atomic operation (or similar) is expensive because it is called so often.

J. Choi, T. Shull, J. Torrellas, Biased reference counting: minimizing atomic
operations in garbage collection, PACT’18 (DOI 10.1145/3243176.3243195).

Most objects are only referenced by the thread in which they were created.

struct PyObject {
 ...
 uint32_t ob_ref_local;
 Py_ssize_t ob_ref_shared;
 ...
};

local reference counter,
freely mutated by thread

shared reference counter,
carefully guarded

11 / 27

https://doi.org/10.1145/3243176.3243195

Why is it working now?

The main issue was CPython’s ubiquitous reference counting. Replacing

((PyObject*)(obj))->ob_refcnt++;

with an atomic operation (or similar) is expensive because it is called so often.

J. Choi, T. Shull, J. Torrellas, Biased reference counting: minimizing atomic
operations in garbage collection, PACT’18 (DOI 10.1145/3243176.3243195).

Most objects are only referenced by the thread in which they were created.

struct PyObject {
 ...
 uint32_t ob_ref_local;
 Py_ssize_t ob_ref_shared;
 ...
};

local reference counter,
freely mutated by thread

shared reference counter,
carefully guarded

11 / 27

https://doi.org/10.1145/3243176.3243195

Also. . . https://peps.python.org/pep-0703

▶ no reference counting of immortal objects: None, True, False, small
integers, interned strings. . .

▶ deferred reference counting: top-level functions, code objects, modules,
methods tend to be accessed by many threads; don’t reference count, only
garbage collect

▶ replacing PyMalloc (for small Python objects) with mimalloc

▶ no linked lists in garbage collecting

▶ no more generational garbage collecting (reference counting handles
short-lived objects)

▶ locks on all mutable containers (lists, dicts) with optimistic access

▶ alternatives to borrowed references in C (PyList_GetItem →
PyList_FetchItem)

▶ “critical sections” in bytecode sequences to avoid deadlocks
12 / 27

https://peps.python.org/pep-0703

Scaling tests

13 / 27

Something computationally expensive in pure Python

Can't use NumPy in subinterpreters, so use Python's built-in array instead.
offsets = (ctypes.c_int64 * (N + 1)).from_address(ptr_offsets)
pt = (ctypes.c_float * offsets[-1]).from_address(ptr_pt)
eta = (ctypes.c_float * offsets[-1]).from_address(ptr_eta)
phi = (ctypes.c_float * offsets[-1]).from_address(ptr_phi)
mass = (ctypes.c_float * N).from_address(ptr_mass)

Dimuon mass on all combinations of muons per event...
for event in range(start, stop):

max_mass = 0
for i in range(offsets[event], offsets[event + 1]):

pt1 = pt[i]
eta1 = eta[i]
phi1 = phi[i]
for j in range(i + 1, offsets[event + 1]):

pt2 = pt[j]
eta2 = eta[j]
phi2 = phi[j]
m = sqrt(2*pt1*pt2*(cosh(eta1 - eta2) - cos(phi1 - phi2)))
if m > max_mass:

max_mass = m
mass[event] = max_mass

14 / 27

Scaling test results (8 physical cores)

Subinterpreters and
free-threading both
escape single-thread
scaling limit.

15 / 27

Scaling test results (8 physical cores)

Free-threading
doesn’t have all the
latest optimizations;
single-threaded is
slower (for now).

15 / 27

Scaling test results (8 physical cores)

In fact, it’s a
constant factor.

15 / 27

CPUs are constantly busy, even though scaling isn’t perfect

16 / 27

CPUs are constantly busy, even though scaling isn’t perfect

For a pure Python, computationally intensive workload like this,
the GIL strictly limits available threads to 1.

16 / 27

Can we go further? (48 physical cores)

The hyperthreading
threshold doesn’t
look significant on
this hardware (AWS
c7i.metal-48xl).

17 / 27

Not all threads finish equal work in equal times

18 / 27

Scaling tests with Uproot

19 / 27

Uproot has already been (partly) evading the GIL

Most computationally intensive work is offloaded to NumPy and Awkward Array,
which release the GIL before numerical computations.

Py_BEGIN_ALLOW_THREADS; // releases the GIL

big_computation_without_PyObjects(); // other threads run, too

Py_END_ALLOW_THREADS; // re-acquires the GIL

return result_with_PyObjects;

But we only enter GIL-released C code on a per-TBasket basis.

The code between these excursions are synchronization points (Amdahl’s law).

20 / 27

Uproot has already been (partly) evading the GIL

Most computationally intensive work is offloaded to NumPy and Awkward Array,
which release the GIL before numerical computations.

Py_BEGIN_ALLOW_THREADS; // releases the GIL

big_computation_without_PyObjects(); // other threads run, too

Py_END_ALLOW_THREADS; // re-acquires the GIL

return result_with_PyObjects;

But we only enter GIL-released C code on a per-TBasket basis.

The code between these excursions are synchronization points (Amdahl’s law).

20 / 27

Two ways to parallelize Uproot

“External”: some code that controls threading (e.g. Dask) calls Uproot

def in_thread(uproot_tree, start, stop):
return uproot_tree.arrays(entry_start=start, entry_stop=stop)

executor = ThreadPoolExecutor(max_workers=N)
batches = executor.map(in_thread, list_of_args_tuples)

“Internal”: Uproot reads TBaskets in parallel but returns one array

executor = ThreadPoolExecutor(max_workers=N)

array = uproot_tree.arrays(
decompression_executor=executor, interpretation_executor=executor

)

21 / 27

Parallelizing Uproot “externally”

GIL-bound is not
bad, but there’s a
small improvement.

The bigger
difference is
between the default
file handler and
MemmapSource.

22 / 27

Parallelizing Uproot “internally”

GIL-bound is not
bad, but there’s a
small improvement.

Especially in the
internal case (more
fine-grained; less
waste from multiple
threads reading the
same TBaskets).

23 / 27

CPUs are not always busy, but free-threaded is busier. . .

Note: file-reading tasks performed with warm cache, so RAM → CPU is the only I/O.

24 / 27

Can we go further? (48 physical cores, “internal” parallelization)

Free-threading
starts to be relevant
above 8 threads and
keeps getting better
until 3 GB/second.

You need well over
8 cores to see this.

25 / 27

CPUs are still not always busy, but free-threaded is busier. . .

26 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

Conclusions

▶ Python 3.13 provides two new ways to avoid the GIL.

▶ Subprocessors require more effort from Python users and are
not well supported by libraries (NumPy).

▶ Free-threading required a massive overhaul of Python’s
internals, but “just works” from a Python user’s perspective.

(Python community is much more interested in free-threading.)

▶ They scale identically, apart from a constant factor (bytecode
optimizations, to be implemented later in free-threading mode).

▶ Uproot has already been releasing the GIL, but benefits from
free-threading if you have a lot more than 8 cores.

27 / 27

