



# Navigating Phase Space for Event Generation – interfacing Sherpa with BAT.jl

Cornelius Grunwald<sup>a</sup>, Timo Janßen<sup>b</sup>, Kevin Kröninger<sup>a</sup>, <u>Salvatore La Cagnina</u><sup>a</sup>, Steffen Schumann<sup>b</sup>

> <sup>a</sup>TU Dortmund University, Germany <sup>b</sup>Georg-August-Universität Göttingen, Germany

SPONSORED BY THE



Federal Ministry of Education and Research

CHEP24 - October 23rd, 2024

Track 5: Simulation and Analysis Tools



Salvatore La Cagnina - TU Dortmund

Interfacing Sherpa with BAT.jl

# Motivation - Improving Sampling Efficiency

- high-energy physics heavily relies on simulated events ⇒ Monte Carlo simulations
- we need high-statistic samples to precisely investigate tails of distributions and more complex final states
- MC simulation efficiency and speed need to improve for precision era, e.g. for HL-LHC (factor ~25 more simulated data required)
- multiple efforts made such as ML, nested sampling, MCMC sampling

[Yallup et al. <u>2205.02030]</u> [Danziger et al. <u>2109.11964</u>] [Kröninger et al. <u>1404.4328</u>]



Image: Machine learning and LHC event generation, Butter et al., 10.21468/SciPostPhys.14.4.079, SciPost Physics 14 (2021)

### The Challenge - Expensive event generation



Computational bottleneck: the hard scattering component

$$\sigma_{pp \to X_n} = \sum_{ab} \int \mathsf{d}x_a \mathsf{d}x_b \; \mathsf{d}\Phi_n \; f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \; |\mathcal{M}_{ab \to X_n}|^2 \; \Theta_n(p_1, \dots, p_n)$$

Difficulty:

•  $|\mathcal{M}|^2$  is typically multi-modal, wildly fluctuating & computationally expensive



https://www.fnal.gov/pub/today/images/images12/figure.jpg

### Sherpa

- MC event generator for collision events
  - Built-in matrix element generators AMEGIC & COMIX
- Sherpa v.3.0 released 3 months ago
- user-friendly configuration files for selecting processes and setting cuts
- main sampling method: importance sampling within physics-informed channel mappings





https://sherpa-team.gitlab.io [Bothmann et al., <u>SciPost Phys.7 (2019)</u>]

#### Sherpa.yaml

| 33 | TAGS: {                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------|
| 34 | MCUT: 66.0,                                                                                                    |
| 35 | NJETS: 3,                                                                                                      |
| 36 | PTMIN: 20.0                                                                                                    |
| 37 | }                                                                                                              |
| 38 |                                                                                                                |
| 39 | BEAMS: 2212                                                                                                    |
| 40 | BEAM_ENERGIES: 6500.                                                                                           |
| 41 | un de maxima - Entradoued de mandre d'Entradouen de la companie de la companie de la companie de la companie d |
| 42 | EVENTS: 100000                                                                                                 |
| 43 |                                                                                                                |
| 44 | PROCESSES:                                                                                                     |
| 45 | - 21 21 -> 11 -11 1 -1 21:                                                                                     |
| 46 | ME Generator: Amegic                                                                                           |
| 47 | Order: {OCD: Any, EW: 2}                                                                                       |
| 48 |                                                                                                                |
| 49 | SELECTORS:                                                                                                     |
| 50 | - [Mass. 1111. \$(MCUT). E CMS]                                                                                |
| 51 | - NJetFinder:                                                                                                  |
| 52 | N: \$(NJETS)                                                                                                   |
| 53 | PTMin: \$(PTMTN)                                                                                               |
| 54 | R: 0.4                                                                                                         |
| 55 | Exp: -1                                                                                                        |
| 56 |                                                                                                                |
| 20 |                                                                                                                |

### Rambo & Multichannel Mappings

- task: generate four-momenta of incoming & outgoing particles from random numbers
- need to fulfill constraints like energy conservation & on shell conditions
- RAMBO mapping: [1308.2922]

$$d\Phi_n(P, p_1, \dots, p_n) = \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i} (2\pi)^4 \delta^4 \left( P - \sum_{i=1}^n p_i \right) \quad d = 3n - 4$$

• Multichannel interface:

$$g(x) = \sum_{i}^{N_c} \alpha_i g_i(x), \quad \sum_{i}^{N_c} \alpha_i = 1$$

- use mixture distribution for multimodal targets
- construct channels based on physics knowledge
- automatic channel weight optimization



# The Bayesian Analysis Toolkit - BAT.jl

- collection of state-of-the art algorithms for Bayesian data analysis in Julia
- focusing on efficiently sampling distributions (particularly via MCMC)
- not relying on a specific modelling language / domain specific language
- provides modern sampling approaches & new algorithms



#### user-specified:

- target (likelihood & data)
- parameters & prior

#### provided by BAT.jl:

- sampling algorithms
  - MCMC sampling
  - Nested Sampling
- integration algorithms
- optimization algorithms







### outputs samples plots modes, mean values, intervals



#### Salvatore La Cagnina - TU Dortmund

#### Interfacing Sherpa with BAT.il

# The Bayesian Analysis Toolkit - BAT.jl

- collection of state-of-the art algorithms for Bayesian data analysis in Julia
- focusing on efficiently sampling distributions (particularly via MCMC)
- not relying on a specific modelling language / domain specific language
- provides modern sampling approaches & new algorithms



#### user-specified:

- target (likelihood & data)
- parameters & prior

#### provided by BAT.jl:

- sampling algorithms
  - MCMC sampling
  - Nested Sampling
- integration algorithms
- optimization algorithms

automated posterior exploration (tuning, parameter space transformations, parallelization, ...)





### outputs samples See Olivers' talk on BAT.jl at 17:09 today in Large Hall A ! $p(\theta_2)$ 0.05 0.00 -15 -105 10 15 -5 0

#### Salvatore La Cagnina - TU Dortmund

#### Interfacing Sherpa with BAT.il

### The BAT.jl - Sherpa Interface

Current interface: Run BAT.jl and call Sherpa as the target distribution



### Example Process: Z + 3 Jets

Z+3jets :  $gg \rightarrow dde^+e^-g$  @ 13GeV pp collisions



2 parameters for the incoming momenta fractions

11 parameters for the momenta of the 5 outgoing particles

### Phase space when sampling in a selected channel (1D)

- one dimensional marginalized distributions of samples
- shown first five parameters of phase space
- abstract parameter space
- wide variety of shapes



### Phase space when sampling in a selected channel (2D)

- one and two dimensional marginalized distributions of samples
- shown first five parameters of phase space
- abstract parameter space
- wide variety of shapes



### Full phase space when sampling in a selected channel



#### Interfacing Sherpa with BAT.jl

### **Transformed Phase Space**



 more favorable sampling conditions using transformed phase space



 $\mathrm{logit}(p) = \mathrm{log}\left(rac{p}{1-p}
ight)$  (0 \mathrm{logit}^{-1}(x) = rac{1}{1+e^{-x}}

### Physical Observables

dilepton mass

Lepton pT





Salvatore La Cagnina - TU Dortmund

Interfacing Sherpa with BAT.jl

### **MCMC** Diagnostics

- trace plots shows good chain mixing and no more visible burn-in
- events generated by MCMC methods are not independent
- autocorrelation plots allow to visualize this effect
- effective sample size (ESS) can be used to account for correlated samples



### Summary & Outlook

- hard scattering process and matrix element calculation costly step in the simulation chain for (future) experiments
- improve efficiency using MCMC sampling techniques for event generation instead of importance sampling







### Summary & Outlook

- hard scattering process and matrix element calculation costly step in the simulation chain for (future) experiments
- improve efficiency using MCMC sampling techniques for event generation instead of importance sampling
- we developed a functioning interface between the BAT.jl tool and the Sherpa MC generator
- successful phase space sampling resulting in matching distributions
- possible to use different parametrizations of the phase space, e.g. Rambo mapping or the process-dependent multichannel mappings







### Summary & Outlook

- hard scattering process and matrix element calculation costly step in the simulation chain for (future) experiments
- improve efficiency using MCMC sampling techniques for event generation instead of importance sampling
- we developed a functioning interface between the BAT.jl tool and the Sherpa MC generator
- successful phase space sampling resulting in matching distributions
- possible to use different parametrizations of the phase space, e.g. Rambo mapping or the process-dependent multichannel mappings
- need to overcome high autocorrelation to improve sampling efficiency
- investigate more-complex processes: correcting for autocorrelation is expected to scale more preferably than unweighting efficiency in importance sampling

### Thank you for your attention !

Salvatore La Cagnina - TU Dortmund







