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Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis (2019):
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• Event generation much faster than detector simulation/reconstruction (at Belle II)
→ O(10ms) vs O(1s)

• Many events discarded by filter (skim)
→ try to predict which events will be discarded, already after event generation

• Not always a clearly correlated variable on generator level
→ example: skim may use involved algorithms like FEI (Full Event Interpretation)
→ train an NN to be a good filter
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https://doi.org/10.5282/edoc.24013


The problem with naive filtering
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• false positives are not too problematic
(we throw them away later by running the “true” skim)

• false negatives may produce bias (we can’t get them back)
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The solution: Importance sampling
Boyang Yu’s Master thesis (2021)

• Use NN output as probability to keep event

• Weight events by inverse probability

• No bias by construction, every event has a chance to be picked

• Train NN to provide highest speedup tnoNN

tNN

to produce same effective sample size
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→ for large enough sample independent of sample size

• Speedup also depends on:
• assumed times for generation (fast), NN inference, simulation/reconstruction (slow)

→ roughly expect tfast : tNN : tslow = 1 : 1 : 100
• filter efficiency (= retention rate)

→ can gain more if more events expected to be skipped

• Conceptionally similar to slicing strategy for MC filters at LHC
→ slicing is essentially importance sampling with discrete probabilities
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https://docs.belle2.org/record/3222


Sampling probability calibration - optimize speedup
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• My claim: prediction from optimally trained (probabilistic) classifier should be related to
optimal sampling probability by a monotonic transformation
→ higher probabilities to pass filter should come with higher sampling probabilities

• Could see this as using a “skewed” sigmoid activation on logits
→ can optimize this with 3 parameters for skewed sigmoid

• Seems no unique solution, rather trade off:
→ same speedup with viewer samples (longer time), but narrower weight distribution
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The dataset
ϒ(4S)

B̅⁰ B⁰

D*(2010)⁺ μ⁻ ν̅(μ) D⁻ ρ(770)⁺ π⁻ π⁺

D⁰ π⁺ K(S)⁰ π⁻ π⁰ π⁺ π⁰

K⁻ μ⁺ ν(μ) π⁺ π⁻ γ γ γ γ

• Using generator level MC record

• List of particles with mother-daughter relations

• Particle features: PDG id, 4-momentum, production vertex position/time
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The model

based on Particle Transformer for Jet Tagging arXiv:2202.03772
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• ParT achieved state-of-the-art performance in jet
tagging by pre-training on their own large dataset
(100M) + fine tuning (e.g top tagging)

• Architecture seems very generic
→ essentially just a transformer
(“Attention is all you need (2017)”)

• Supports edge features, in our case:
• adjacency matrix of decay graph

(had success using GNN architectures before)
• angle between pairs
• invariant masses between pairs

• For new skims/filters hope to be able to finetune
pre-trained model
→ especially interesting for low filter efficiencies

• 10-layer, 2M parameter model
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https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/1706.03762


How to do transfer learning

Looking at two methods:

• Feature extraction: Remove final layer, only retrain that
→ simplest case: just retrain a single neuron
→ will likely only work if new skim highly correlated with something seen during training

• Whole-model fine-tuning: start with pre-trained model but adjust all parameters
→ also reinitialize last layer in case of different output
→ hyperparameters from ParT paper:

• learning rate 0.0001/0.005 for pre-trained/last-layer parameters
• weight decay 0.01
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Fine tuning tests
fine tune model pre-trained on a reference skim

Subset of reference
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Skim C
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• As expected feature extraction bad if low linear correlation

• Train from scratch does typically not work well with only
2k (1k pass) events

• Full finetune shows promising results!
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Adaptive/Reinforcement learning

Simulated reinforcement learning1 for skim C

• For running on new skims could consider “reinforcement learning”:
→ Train model while producing data and running skim
→ Model becomes successively better producing data more efficiently

• Advantage: Overall time saving, on-the-fly procedure in one step

• Disadvantage: need to implement training loop in production software

1from Daniel Pollmann’s Bachelor thesis (2024)
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Large scale training
• Many pre-defined skims with data available

→ many different definitions centrally run on large datasets
→ pre-train model on large datase that predicts probabilities for all skims
→ data with 51 different labels

• Also condition on background type
→ 7 Generic samples: B±,0 pairs, qq̄ with 4 different q flavours, τ τ̄
(representative of e+e− collisions at 10.58 GeV)

• Using dataset with ≈ 180M events (10% kept for testing),
roughly balanced between all 7 generic samples
→ corresponds to roughly 20 fb−1 of simulated data

• No class weighting, just take labels as they come
→ partially overlapping → binary cross entropy term for each

• Hope: Diverse training dataset makes finetuning more flexible
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Training results
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• Training worked with similar setup as for fewer labels
• Achievable speedups for different skims correlate with

• Separation power (AUC, area under ROC curve)
→ higher separation leads to higher speedup

• Skim efficiency
→ lower skim efficiency tends to higher speedup
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Summary and Conclusions

• We’d like to speedup our simulation with NN assisted filters
→ filter events that won’t pass downstream selection before running expensive parts
(detector simulation and reconstruction)

• Using importance sampling technique to avoid bias
→ continuous version of traditional “slicing” strategy

• Metric to optimize: speedup when producing same effective sample size
→ can be calibrated with parameterized logistic function

• Use Transformer model to generically capture MC generator information

• Transfer learning to capture skims with little training data seems promising
→ fine tuning seems to work also for skim selections not seen during training
→ may also help to avoid retraining when conditions/calibrations/selections change
→ also offers prospects for on-the-fly reinforcement learning

• Can run the pretraining on a large dataset with many different skims
→ maximize diversity of skim selections and inputs seen by the model
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Backup
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Hyperparameters

• Largely following architecture from ParT paper:
• 8 Transformer blocks with self-attention
• 2 Transformer blocks with class-attention
• 8 Attention heads in each multi-head attention block
• Embedding size 128
• MLP hidden layers have 4 times the embedding size

→ around 2 Million parameters

• Modifications/Additions:
• Fewer norm layers (Pre-LN transformer vs Normformer in ParT)
• Embedding layer for PDG ID
• Embedding layer for sample type
• 3 pair features (Decay tree adjacency matrix, invariant masses, angle between pairs)
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GNN vs ParT
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→ transformer model (green) better than GNN (blue, orange) for large dataset
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