
Transfer learning for Smart Background Simulation
at Belle II

Nikolai Hartmann Boyang Yu Daniel Pollmann Thomas Kuhr

LMU Munich

October 22, 2024, CHEP

1 / 13



Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis (2019):

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

• Event generation much faster than detector simulation/reconstruction (at Belle II)
→ O(10ms) vs O(1s)

• Many events discarded by filter (skim)
→ try to predict which events will be discarded, already after event generation

• Not always a clearly correlated variable on generator level
→ example: skim may use involved algorithms like FEI (Full Event Interpretation)
→ train an NN to be a good filter

2 / 13

https://doi.org/10.5282/edoc.24013


The problem with naive filtering

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

• false positives are not too problematic
(we throw them away later by running the “true” skim)

• false negatives may produce bias (we can’t get them back)

3 / 13



The solution: Importance sampling
Boyang Yu’s Master thesis (2021)

• Use NN output as probability to keep event

• Weight events by inverse probability

• No bias by construction, every event has a chance to be picked

• Train NN to provide highest speedup tnoNN

tNN

to produce same effective sample size
(
∑

i wi)
2∑

i w
2
i

after skimming

→ for large enough sample independent of sample size

• Speedup also depends on:
• assumed times for generation (fast), NN inference, simulation/reconstruction (slow)

→ roughly expect tfast : tNN : tslow = 1 : 1 : 100
• filter efficiency (= retention rate)

→ can gain more if more events expected to be skipped

• Conceptionally similar to slicing strategy for MC filters at LHC
→ slicing is essentially importance sampling with discrete probabilities

4 / 13

https://docs.belle2.org/record/3222


Sampling probability calibration - optimize speedup

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

de
ns

ity

Logits (pre-activation output)
fail
pass

10 8 6 4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid (cross entropy training)
Optimized for Speedup

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

de
ns

ity

Predicted pass probability (cross entropy training)
fail
pass

Optimal sampling probability for speedup
fail
pass

• My claim: prediction from optimally trained (probabilistic) classifier should be related to
optimal sampling probability by a monotonic transformation
→ higher probabilities to pass filter should come with higher sampling probabilities

• Could see this as using a “skewed” sigmoid activation on logits
→ can optimize this with 3 parameters for skewed sigmoid

• Seems no unique solution, rather trade off:
→ same speedup with viewer samples (longer time), but narrower weight distribution

5 / 13



The dataset
ϒ(4S)

B̅⁰ B⁰

D*(2010)⁺ μ⁻ ν̅(μ) D⁻ ρ(770)⁺ π⁻ π⁺

D⁰ π⁺ K(S)⁰ π⁻ π⁰ π⁺ π⁰

K⁻ μ⁺ ν(μ) π⁺ π⁻ γ γ γ γ

• Using generator level MC record

• List of particles with mother-daughter relations

• Particle features: PDG id, 4-momentum, production vertex position/time

6 / 13



The model

based on Particle Transformer for Jet Tagging arXiv:2202.03772

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

SoftMax

P-MHA

LN

M
L
P

(b) Particle Attention Block (c) Class Attention Block

LN

LN

Particles

Interactions

Particle
Attention
Block S

of
tM
ax

Class
Attention
Block

E
m
be
dd
in
g

E
m
be
dd
in
g

blocks

Particle
Attention
Block

Class token

Class
Attention
Block

(a) Particle Transformer

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

Linear

GELU

Linear

LN

Particle
Attention
Block

concat

• ParT achieved state-of-the-art performance in jet
tagging by pre-training on their own large dataset
(100M) + fine tuning (e.g top tagging)

• Architecture seems very generic
→ essentially just a transformer
(“Attention is all you need (2017)”)

• Supports edge features, in our case:
• adjacency matrix of decay graph

(had success using GNN architectures before)
• angle between pairs
• invariant masses between pairs

• For new skims/filters hope to be able to finetune
pre-trained model
→ especially interesting for low filter efficiencies

• 10-layer, 2M parameter model

7 / 13

https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/1706.03762


How to do transfer learning

Looking at two methods:

• Feature extraction: Remove final layer, only retrain that
→ simplest case: just retrain a single neuron
→ will likely only work if new skim highly correlated with something seen during training

• Whole-model fine-tuning: start with pre-trained model but adjust all parameters
→ also reinitialize last layer in case of different output
→ hyperparameters from ParT paper:

• learning rate 0.0001/0.005 for pre-trained/last-layer parameters
• weight decay 0.01

8 / 13



Fine tuning tests
fine tune model pre-trained on a reference skim

Subset of reference

0 200 400 600 800 1000
batches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

Train on 2000 events, batch size 256, Transparent: train, Solid: validation
from scratch
feature extraction (+linear layer)
full finetuning

Skim A

0 200 400 600 800 1000
batches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
ss

Train on 2000 events, batch size 256, Transparent: train, Solid: validation
from scratch
feature extraction (+linear layer)
full finetuning

Skim B

0 200 400 600 800 1000
batches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

Train on 2000 events, batch size 256, Transparent: train, Solid: validation
from scratch
feature extraction (+linear layer)
full finetuning

Skim C

0 200 400 600 800 1000
batches

0.0

0.2

0.4

0.6

0.8

lo
ss

Train on 2000 events, batch size 256, Transparent: train, Solid: validation
from scratch
feature extraction (+linear layer)
full finetuning

• As expected feature extraction bad if low linear correlation

• Train from scratch does typically not work well with only
2k (1k pass) events

• Full finetune shows promising results!

9 / 13



Adaptive/Reinforcement learning

Simulated reinforcement learning1 for skim C

• For running on new skims could consider “reinforcement learning”:
→ Train model while producing data and running skim
→ Model becomes successively better producing data more efficiently

• Advantage: Overall time saving, on-the-fly procedure in one step

• Disadvantage: need to implement training loop in production software

1from Daniel Pollmann’s Bachelor thesis (2024)
10 / 13



Large scale training
• Many pre-defined skims with data available

→ many different definitions centrally run on large datasets
→ pre-train model on large datase that predicts probabilities for all skims
→ data with 51 different labels

• Also condition on background type
→ 7 Generic samples: B±,0 pairs, qq̄ with 4 different q flavours, τ τ̄
(representative of e+e− collisions at 10.58 GeV)

• Using dataset with ≈ 180M events (10% kept for testing),
roughly balanced between all 7 generic samples
→ corresponds to roughly 20 fb−1 of simulated data

• No class weighting, just take labels as they come
→ partially overlapping → binary cross entropy term for each

• Hope: Diverse training dataset makes finetuning more flexible

11 / 13



Training results

0.88 0.90 0.92 0.94 0.96 0.98 1.00
AUC

1

2

3

5

7

10

15

20

30

Sp
ee

du
p

Assuming tfast : tNN : tslow = 1 : 1 : 100, wmax = 1000
Skims/Filters

10 4

10 3

10 2

10 1

Sk
im

 E
ffi

cie
nc

y

• Training worked with similar setup as for fewer labels
• Achievable speedups for different skims correlate with

• Separation power (AUC, area under ROC curve)
→ higher separation leads to higher speedup

• Skim efficiency
→ lower skim efficiency tends to higher speedup

12 / 13



Summary and Conclusions

• We’d like to speedup our simulation with NN assisted filters
→ filter events that won’t pass downstream selection before running expensive parts
(detector simulation and reconstruction)

• Using importance sampling technique to avoid bias
→ continuous version of traditional “slicing” strategy

• Metric to optimize: speedup when producing same effective sample size
→ can be calibrated with parameterized logistic function

• Use Transformer model to generically capture MC generator information

• Transfer learning to capture skims with little training data seems promising
→ fine tuning seems to work also for skim selections not seen during training
→ may also help to avoid retraining when conditions/calibrations/selections change
→ also offers prospects for on-the-fly reinforcement learning

• Can run the pretraining on a large dataset with many different skims
→ maximize diversity of skim selections and inputs seen by the model

13 / 13



Backup

14 / 13



Hyperparameters

• Largely following architecture from ParT paper:
• 8 Transformer blocks with self-attention
• 2 Transformer blocks with class-attention
• 8 Attention heads in each multi-head attention block
• Embedding size 128
• MLP hidden layers have 4 times the embedding size

→ around 2 Million parameters

• Modifications/Additions:
• Fewer norm layers (Pre-LN transformer vs Normformer in ParT)
• Embedding layer for PDG ID
• Embedding layer for sample type
• 3 pair features (Decay tree adjacency matrix, invariant masses, angle between pairs)

15 / 13



GNN vs ParT

0.0 0.5 1.0 1.5 2.0
Number of training samples 1e8

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44
Lo

ss

transparent: val loss

GNN

GNN large

ParT

Epoch boundaries

→ transformer model (green) better than GNN (blue, orange) for large dataset

16 / 13


