
1

2

JUNO experiment

3

• JUNO: Jiangmen Underground Neutrino Observatory
• Rich physics program [1]

• Neutrino mass ordering and precise measurement of 3
oscillation parameters

• Reactor neutrinos, supernova burst neutrinos, geo
neutrinos, atmospheric neutrinos, and solar neutrinos

• JUNO detector
• 700 m deep underground
• Central detector: 20 kton LS with 3%@1MeV of energy

resolution.
• Water Cerenkov detector and Top Tracker

• Data taking expected in ~2025

• Lifetime: 20+ years

[1] JUNO Collaboration, Prog.Part.Nucl.Phys. 123 (2022) 103927

JUNO offline software

4

JUNOSW
• JUNOSW is the offline software

• Implements the JUNO dependencies based on SNiPER

• SNiPER is a general purpose software framework used by several HEP exp.
• No dependencies to a specific experiment, including JUNO

JUNO detector simulation software

5

The structure of detector simulation[1]

[1] Eur. Phys. J. C (2023) 83: 382， Erratum: Eur. Phys. J. C (2023) 83: 660

The JUNO geometry of detector simulation

Optimization of DetSim memory consumption

--pmt-hit-type 2 --pmtsd-merge-twindow 1.0 --pmtsd-merge-twindow 1.0

The compact hit type hittype1
248 bytes

hittype2
40 bytes

The hits within the same time window(1ns) is merged into one hit

Full optical photon simulation implemented in JUNO offline software.
Large detector size and high energy deposition, millions of optical photons generated, high memory consumption.

6

For high energy muon

Optimization of DetSim memory consumption

7

Implementation of the DataModelWriterWithSplit method

Due to the compression algorithm of ROOT, memory
will sharply increase during output

Memory changes over time in muon simulation

Split a collection of hits within an event into multiple parts
to complete the output

Memory consumption after optimization

8

Memory consumption during the Muon simulation： >3GB

The memory usage after completing the initialization

Memory consumption vs data center configuration

9

CPU core core idle

Memory Memory

CPU core CPU core

3GB 3GB

hep_sub -mem (>3000M) Muon.shData center configuration

6GB

Memory consumption
During the Muon simulation： >3GB

Memory
6GB

Allocate 3GB of memory for each CPU core Assign two cores to meet the memory requirements of the job

Multi-threaded detector simulation

10

Shared

The design of MT detector simulation

Global Task

Worker Task

(Intel TBB)

Multi-threaded detector simulation

11

Task:GOutput()
PruneGlobalBuffer()

Worker Worker Worker

Evt

Evt

Evt

Evt

Evt

Clean up memory
Gen_event

MtNavbuffer MtNavbuffer MtNavbuffer
beginhandle() endhandle()Gen_event

Output Output Output Merge

Task:GInput()
Gentools()+FillGlobalBuffer()

Circular buffer

Multi-threaded detector simulation

12

Task:GOutput()
PruneGlobalBuffer()+RootIOSvc

Task:GInput()
 Gentools()+FillGlobalBuffer()

Evt

EvtEvtEvtEvt

Evt

Gen_event
Clean up

环形缓冲区

12

• In GtPositionerTool (Set the vertices of events), need to access
Geant4 geometry, unable to complete such task in multi-threaded
input task.

Generator

Worker Worker Worker

MtNavbuffer MtNavbuffer MtNavbuffer
beginhandle() endhandle()Gen_event

Output Output Output Merge

Worker

Evt

MtNavbuffer
Gen

GtPositionerTool(Tool)
GenTools(Alg)

Gen

Event generation in multi-threaded simulation

Multi-threaded detector simulation

Task:GInput()
Gentools()+FillGlobalBuffer()

Gen_event

Task:GOutput()
PruneGlobalBuffer()+RootIOSvc

Evt

Clean up

环形缓冲区

13

Evt• We adopted multi-stream output and used the DataModelWriterWithSplit
method and so on mentioned earlier to reduce the memory pressure on
output.Worker

Worker Worker Worker

Evt EvtEvtEvt

MtNavbuffer MtNavbuffer MtNavbuffer
beginhandle() endhandle()Gen_event

Output Output Output Merge

Other ways to reduce memory consumption in multi-threaded detector simulation

Multi-threaded detector simulation

1414

The unity of results between multi-threading and single-threading

• In MT mode
• Each worker has its own

unique random number
sequence

• The result is not reproducible
• Inconsistent with single-

threaded results.

• In serial mode
• Set the seed value at the

beginning of the program
• The result can be reproducible

event by event

MT mode Serial mode

Multi-threaded detector simulation

1515

The unity of results between multi-threading and single-threading

evt1evt2

seedsQueue long s1
long s2

long s1
long s2

s1:event id s2:offset(User-specified seed value)

• Management of random number
• Use eventid and offset value to determine the random

number sequence of events
• Reset the random number sequence before setting the

four-momentum
• After completing the setting, save the status of the

random engine :std::vector
• Ensured consistency of results between multi-threading

and single-threading

MT mode

+randomengine status

+reset randomengine status

Multi-threaded detector simulation performance

16

100evts Muon 200evts Muon 500k evts 1MeV Gamma

• Performance testing
• For 4 threads, ~100% efficiency can be achieved
• Efficiency decreases significantly when more than four threads are used
• For events with evenly distributed energy deposition, almost linear acceleration can be achieved
• Memory consumption has reached the expected target, less than 3GB per core

Multi-threaded detector simulation performance

17

Causes of decreased CPU utilization efficiency
• Different energy deposition in LS event by event, resulting a significant difference in simulation time
• At the end of the program, other threads need to wait for the completion of simulating a high-energy event in

one thread.

Multi-threaded detector simulation performance

18

Possible solutions
• Make a pre-select, for events with energy deposition higher than a certain value, save the seed first, do not

implement optical photon simulation, and then simulate this type of events later, for example, based on
Opticks@GPU

Multi-threaded detector simulation performance

1919

The result is consistent

Test sample：100k evts 1MeV Gamma

Summary

20

Backup

21

OP simulator[1]

[1]J.Phys.Conf.Ser. 2438 (2023) 1, 012078

