Monte Carlo challenges for Non Perturbative QED

Anthony Hartin

LMU

CHEP 2024 October 23rd, 2024

Anthony Hartin non perturbative QED monte carlo

The strong field scale: Schwinger pair creation

" Schwinger pairs created if virtual pairs separated by Compton wavelength $\lambda = \hbar/m_ec$ within the virtual pair lifetime $\Delta t = \hbar/m_ec^2$."

" In strong external fields the normal vacuum is unstable and decays into a new vacuum that contains real particles."

Greiner and Muller, QED of Strong Fields

- The Schwinger critical field ($E_{\rm cr} = m_e^2 c^3/e\hbar = 1.32 \times 10^{18}$ V/m)
- What novel experimental effects can we expect as E → E_{cr}
- How do we calculate non perturbative cross-sections?
- What do experiments look like?

Where might we expect non perturbative effects?

Electron/laser interactions E_{cr} in the e-beam rest frame

Magnetar *B_{cr}* near surface Vacuum birefringence

q+q- particle collider E_{cr} in each bunch's rest frame

Hawking radiation G_{cr} equivalent critical gravitational field

Furry Picture: a non perturbative, semi classical QFT

[Int J Mod Phys A33, 1830011 (2018)]

Furry Pic Lagrangian, background field A^{ext}

$$\begin{split} \mathcal{L}_{\text{QED}}^{\text{Int}} = & \bar{\psi}(i\partial\!\!\!/ - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}(A^{\text{ext}} + A)\psi \\ \mathcal{L}_{\text{QED}}^{\text{FP}} = & \bar{\psi}^{\text{FP}}(i\partial\!\!\!/ - eA^{\text{ext}} - m)\psi^{\text{FP}} - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}^{\text{FP}}A\psi^{\text{FP}} \end{split}$$

$\hookrightarrow \textbf{Bound Dirac equation}$

$$(i\partial -eA^{\text{ext}}-m)\psi^{\text{FP}}=0$$

\hookrightarrow Dressed wave functions

$$\begin{split} \psi^{\mathsf{FP}} &= \mathbf{E}_p \; e^{-ip \cdot x} \; u_p \\ &\mathbf{E}_p \!=\! \exp\left[-\frac{1}{2(k \cdot p)} \left(e \mathbf{A}^{\mathsf{ext}} \mathbf{k} \!+\! i2e(A^e \cdot p) \!-\! ie^2 \mathbf{A}^{\mathsf{ext}2}\right)\right] \end{split}$$

Dressed Feynman vertex

- New Feynman rules
- Exact wavefunctions only for some fields (plane wave, 1935)
- cross-sections are complicated & still in progress
- Effective, field dependent coupling constant, $f(\alpha, \chi)$
- χ is the field strength in rest frame of particle

Novel non perturbative processes

One photon pair prodⁿ (photon decay)

Trident process (resonant production)

Complex mass (resonant propagators)

Photon splitting (vacuum birefringence)

Strong fields at the collider Interaction Point

- $\circ~$ SQED χ depends on collider bunch parameters and the pinch effect
- All collider processes are SQFT processes: backgrounds and signal
- Coherent e+e- pair production, depolarisation, WW pair production [A. Hartin, IJMPA 33, 1830011 (2018)]

Machine	LEP2	SLC	ILC	CLIC	
E (GeV)	94.5	46.6	500	1500	
$N(\times 10^{10})$	334	4	2	0.37	
$\sigma_x, \sigma_y \ (\mu m)$	190, 3	2.1, 0.9	0.49, 0.002	0.045, 0.001	
σ_z (mm)	20	1.1	0.15	0.044	
χav	0.00015	0.001	0.24	4.9	

Field strength parameter, χ

Schwinger critical field, Ec

 $\chi = E_{\rm rest}/E_{\rm cr}, \quad E_{\rm c} = 1.3 \times 10^{18} \, {\rm V/m}$

precision spin physics/IP depolarisation needs:

e- anomalous magnetic moment

Experiment example: electron/laser interactions

[Phys Rev D 99, 036008 (2019)]

- Design experiment to test non perturbative phenomena, eg. mass shift, assisted Schwinger production
- Near head on collision between high energy electrons and focussed laser
- $\circ~$ Field strength of laser relativistically boosted, parameters ξ,χ
- Several complementary experiments, spread of SQED parameters
- Different experimental configs allow several SQED processes
- Real experiment has gaussian pulse with varying intensity (ξ)
- Polarisation state may not be "pure"
- Experimental effects need to be "unpacked" - angular spread, gaussian pulse, crossing angle

Experiment	$\lambda(nm)$	Elaser (J)	focus (μm^2)	pulse (fs)	$E_{e^{-}}({\rm GeV})$	ξ	χ
SLAC E144	527/1053	2	50	1880	46.6	0.66	2.7
LUXE Phase0	800	0.35	100	35	17.5	1.54	0.29
LUXE Phase1	800	7	100	35	17.5	6.9	1.29
FACET II	800	0.7	64	35	10	2.3	0.29
ELI-NP	1053	2.2	100	22	0.750	6.4	0.04
AWAKE	800	3	64	20	50	7.45	4.0

IPstrong - SQED monte carlo PIC simulation code

[https://anthonyhartin.wixsite.com/physics/software]

- Furry picture SQED interactions, via monte carlo, embedded in a 3D PIC electromagnetic solver
- Calculate SQED parameters (ξ, χ) in each voxel
- Monte carlo for each SQED process (rarest first)
- e-/laser, e+e- collisions, crystal lattices
- Internally generated or externally loaded bunches
- Fortran 2008 with openMPI (extendable to GPU)

High Intensity Compton Scattering - rest mass shift

- Significant part of electron energy taken up by electron motion in the field/dispersive vacuum. Less energy available for radiated photon
- Manifests in Compton edge shift

HICS with mass shift for LUXE and E144

IPstrong validation, datasets and development

OPPP positron spectrum

Features to be added

- · Linear/elliptical polarised laser
- Initial and final state spin and polarisation
- Trident (with exact, non perturbative photon propagator)
- Milli-charged particles
- Other higher order processes

Monte carlo datasets

- initial and final states of beam as well as stdhep events
- BPPP: 5m and 12m foil to IP
- HICS + OPPP : gaussian pulse, 17.2° crossing angle
- Ideal, flat laser pulses, head on collisions
- Latest version V1.2.02

/afs/desy.de/user/h/hartin/public/IPstrong

BACKUP

OPPP and Schwinger critical field measurement

[Phys Rev D 99, 036008 (2019)]

One photon pair production (OPPP)

OPPP rate, non perturbative regime

OPPP Rate at constant χ reaches non perturbative asymptote for $\xi \ge 1$ Note the similarity with the rate of Schwinger pair creation (from the vacuum)

$$\Gamma_{\rm Schwinger} = \frac{m^4}{(2\pi)^3} \frac{E^2}{E_c^2} \exp\left[-\pi \frac{E_c}{E}\right]$$

An experiment to measure the non perturbative OPPP process also informs us about Schwinger pair creation

Theoretical challenges

Theoretical challenges are simulation challenges as well!

Looong trace calculations...

 Employ Fierz transformations for Volkov spinors [Phys Rev D 94, 073002 (2016)]

Dressed vertices...

 The vertex is dressed with coupled spinors/momentum

$$\gamma^{\mu}_{\rm Y} = \int {\rm d}^4 y \, \bar{E}_f(y) \gamma^{\mu} E_i(y) \, e^{i [S_F(y) - S_I(y)]} \label{eq:gamma_static}$$

Smeared fermion wavepackets...

- We don't have "free" fermions, but "bound" fermions
- $\circ~$ IN/OUT states require background field to vanish at $t=\pm\infty$ [Meyer, J Math Phys 11 312 (1970)]

Integrated background contributions...

 Infinite summations over special functions and resonances. Analytic solutions help computation!

$$\sum_{r=-\infty}^{\infty} \frac{1}{r-a} \operatorname{J}_r(z_i) \operatorname{J}_{l-r}(z_f) =?$$

SQED in ultra peripheral heavy ion collisions

heavy ion UPC: 2 equivalent photons

SQED heavy ion UPC: 1 equivalent photon + intense field

The "usual" EPA approach

- · Approaching ions considered equivalent photons
- Search for low activity collisions, no QCD
- Gamma-gamma physics with Coulomb corrections
- Recent ATLAS Pb-Pb photon scattering search, hep-ex:1904.03536
- **CURIOUS:** unexplained resonances in heavy ion positron spectra at GSI, Darmstadt

An SQED approach (new possible studies)

- Extremely strong fields operating over very short time scale, use SQED
- Equivalent gammas from one ion pass through the field of oncoming ion
- Ion field adjusts screening charge. photon has an effective mass
- SQED assisted Schwinger production
- SQED trident pair production, has SQED resonance in effective propagator (resonant positron spectrum)

Strong field Astrophysical/Cosmological arena

Magnetar Vacuum birefringence

Vacuum birefringence

- Strong field effects in observation of polarised light from Magnetar
- Possible evidence of strong field vacuum birefringence (10¹³ G)
- Polarisation should be correlated with magnetic field relative to Earth
- Reported by arxiv:1610.08323

Cosmological Schwinger effect

- Hawking radiation is Schwinger pair creation in strong gravitational field
- Non perturbative QED ↔ QED in curved space-times (Hollands, Wald arxiv:1401.2026)
- Strong field provided by gravity in early universe (Martin arxiv:0704.3540)
- Two point correlation function linked to CMB fluctuations

The polarisable quantum vacuum

Heisenberg uncertainty

Virtual dipole screen

Bare/Dressed charge

- Casimir force implies virtual particles have real physical effects
- Strong background field couples to charged virtual particles and polarises the vacuum
- The screening charge is rearranged, leading to possibly large effects even at modest field strengths
- At Schwinger critical field strength, vacuum decays into real pairs
- New phenomenology results odd vertex diagrams, resonant propagators, different manifestations of IR divergences
- Polarisable vacuum applicable to strong gravity as well as strong EM fields
- Need to investigate experimental signatures within reach using today's and upcoming technology

IPstrong monte carlo as a service

- · We want the non perturbative community to use customised software
- Exploit modern cloud computing resources
- o Orchestrate services and resources with Kubernetes
- Create more workers to scale up service provision

1st challenge: Dressed vertices & higher order traces

SQED Feynman diagrams are easy...

- Double fermion lines are Volkov-type solutions
- Volkov E_p functions can be grouped around the vertex
- only need one new Feynman picture element the dressed vertex

$$\gamma^{\mu}_{\text{fpx}_2} = \int d^4 x_2 \, \bar{E}_{p_f}(x_2) \gamma^{\mu} E_{p_i}(x_2) \, e^{i(p_f + k_f - p) \cdot x_2}$$

... but the calculations, not

o 2nd order trace has 4 dressed vertices. How many terms?

$$\sum |M_{\rm fi}|^2 \propto {\rm Tr} \left[(\not\!\!p_{\rm f} + m) \gamma^{\mu}_{{\rm fpx}_2}(\not\!\!p + m) \gamma^{\nu}_{{\rm ipx}_2}(\not\!\!p_{\rm i} + m) \bar{\gamma}_{{\rm fpx}_1\nu}(\not\!\!p + m) \bar{\gamma}_{{\rm fpx}_1\mu} \right] -$$

- 4 channels x 4 γ x (2x2) E_p x (4x2) spin sum = 512 terms
- Higher order terms become intractable
- Feyncalc strategy no good for strong field particle generator
- Need schema for Furry pic trace simplification for any order

Fierz transformation for Volkov spinors

[Phys Rev D 94, 073002 (2016)]

New bound Dirac solutions. Canonical momentum Π_{px} . Define the Volkov spinor V_{px}

$$\Psi_{\rm prx}^{\rm V} = n_p \left[\not\!\!{\rm I} \!\!\!{\rm I}_{\rm px} + m \right] \frac{\not\!\!{\rm k}}{2k \cdot p} \, u_{\rm pr} \, e^{-i \Delta_{\rm px}} \equiv V_{\rm pxr} \, e^{-i \Delta_{\rm px}}$$

Extend Fierz transformations to Volkov spinors

$$\sum_{\mathsf{rsr's'}} [\bar{V}_{\mathsf{frx}} \, \Gamma_{\mathsf{J}}^{j} \, V_{\mathsf{isx}}] [\bar{V}_{\mathsf{is'x'}} \, \Gamma_{\mathsf{J}} \, {}_{j} V_{\mathsf{fr'x'}}] = \sum_{\mathsf{rsr's'K}} F_{\mathsf{JK}} \, \left[\bar{V}_{\mathsf{frx}} \, \gamma^{\mu} \Gamma_{\mathsf{K}}^{k} \gamma_{\mu} \, V_{\mathsf{fr'x'}} \right] \left[\bar{V}_{\mathsf{is'x'}} \, \Gamma_{\mathsf{kK}} \, V_{\mathsf{isx}} \right]$$

example: amplitude for HICS

$$M_{\rm f\,i} = -ie \int d^4x \; \bar{\psi}_{\rm frx}^{\rm V} \, A_{\rm fx} \, \psi_{\rm isx}^{\rm V}$$

squared amplitude splits into two traces

$$|M_{\rm fi}|^2 \propto \sum_{\rm K} F_{\rm SK} \ {\rm Tr} \left[\bar{V}_{\rm fx} \gamma^{\mu} \Gamma^k_{\rm K} \gamma_{\mu} \ V_{\rm fx'} \right] {\rm Tr} \left[\bar{V}_{\rm ix'} \ \Gamma_{\rm k \, K} \ V_{\rm ix} \right]$$

2nd challenge: Charge bunch interactions

Discretise the interaction

- transform to head on collision
- Divide into overlapping slices
- Divide slices into mc voxels
- Calculate SQED parameters (ξ, χ) in each voxel
- Monte carlo for each SQED process (rarest first)

Macro vs Micro

- Real particles enter/leave voxel
- Higher order processes are tested within each voxel
- Distinguish between analytic rate within one voxel, and the effective global rate from sampling across whole bunch/pulse
- final particle ensemble built up over successive voxel monte carlo + time step through the whole collision (typically 5σ separation)