Scientific Computing

Differentiating electromagnetic showers in a sampling calorimeter

Max Aehle, University of Kaiserslautern-Landau Mihály Novák, CERN Vassil Vassilev, Princeton Nicolas R. Gauger, University of Kaiserslautern-Landau Lukas Heinrich, TU Munich Michael Kagan, SLAC David Lange, Princeton

> CHEP '24, Krakow October 19th–25th, 2024

<arxiv.org/abs/2405.07944>

Outline:

- **1** Mathematical Challenges
- 2 AD for G4HepEm/ **HepEmShow**
- **3** Future Perspectives

Scientific Computina

Algorithmic Differentiation (AD) / Diff. Programming

- Set of techniques to evaluate derivatives of computer-implemented functions.
- Useful e.g. for gradient-based optimization of a computationally heavy loss function, finding optimal design parameters, model parameters etc.
- **Forward mode** of AD with a single AD input x : For each number a handled by the primal program, keep track of $\dot{a} = \frac{\partial a}{\partial x}$, augmenting all real-arithmetic operations:

$$
c = a + b \rightsquigarrow \dot{c} = \dot{a} + \dot{b}
$$

$$
c = a \cdot b \rightsquigarrow \dot{c} = \dot{a} \cdot b + a \cdot \dot{b}
$$

etc. Run-time and memory performance asymptotics match those of numerical differentiation, but AD is exact.

Reverse mode of AD: More complicated. Allows to compute a gradient of a single AD output w. r. t. many AD inputs in one stroke. \rightarrow Extremely useful for optimization.

AD Tools

AD tools identify real-arithmetic operations in the primal program and insert the appropriate AD logic. Different mechanisms have been reported:

- Source Transformation
- Operator Overloading, e.g. CoDiPack from RPTU.
- \blacksquare Hooking into the compiler, e.g. Clad by V. Vassilev.
- **Dynamic binary instrumentation of machine code, Derivgrind from** RPTU (M. Aehle's PhD topic).
- **Hardware**

Video (7 min) about Derivgrind+LibreOffice Calc: <https://t1p.de/tt4ne> \mathbb{Z}

Can AD be useful for HEP?

- There were (gradient-free) optimization studies already while designing the I HC $¹$ </sup>
- **Studies concerned with single experiments have shown ample room for** optimization.²
- There is a collaboration 3 and a yearly workshop 4 on bringing AD into several fields of fundamental physics.
- No differentiated version of Geant4 yet.
- **The To make it work, we need to solve technical and mathematical** challenges.

¹S. Russenschuck, T. Tortschanoff. Mathematical Optimization of Superconducting Accelerator Magnets, IEEE Trans. on Magnetics 30 (5) 1994.

 $2T$. Dorigo, Geometry optimization of a muon-electron scattering detector, Physics Open 4 (2020) 100022

 3 MODE Collaboration, coordinated by T. Dorigo, <mode-collaboration.github.io> ⁴<https://indico.cern.ch/event/1242538/>

AD of Geant4 – Many Challenges

Technical

- Geant4 is really big (~ 1 M lines of C++ code). AD tools do not require rewriting, but usually still some manual efforts. \rightsquigarrow Machine-code-based AD with Derivgrind solves this aspect.
- Performance degrades, memory required to store the tape, etc.

Mathematical

The derivatives we compute with AD may not be the ones we need. \rightarrow This talk: Study AD for Geant4-like particle simulation.

G4HepEm and HepEmShow

- $R & D$ project by Mihaly Novak, Jonas Hahnfeld, Ben Morgan
- **Simulation of electromagnetic** showers (e^-, e^+, γ)
- \blacksquare Isolates the required data and functionalities from Geant4, well documented, customizable.

- Created by Mihaly Novak
- Self-contained application using G4HepEm but not Geant4.
- Simulates electromagnetic showers in a sandwich calorimeter.

<github.com/mnovak42/g4hepem> <github.com/mnovak42/hepemshow>

Average energy deposition as a function of primary energy:

Energy deposition of an EM shower in some layer of a sampling calorimeter, depending on the energy of the primary particle. Simulated with G4HepEm/HepEmShow, 1k events per data point.

Even though the "noise" has a low magnitude, its derivative can have a large magnitude! The derivative can also be zero with probability 1. . .

Average energy deposition as a function of primary energy:

Energy deposition of an EM shower in some layer of a sampling calorimeter, depending on the energy of the primary particle. Simulated with G4HepEm/HepEmShow, 1k events per data point.

Even though the "noise" has a low magnitude, its derivative can have a large magnitude! The derivative can also be zero with probability 1. . .

Average energy deposition as a function of primary energy:

Energy deposition of an EM shower in some layer of a sampling calorimeter, depending on the energy of the primary particle. Simulated with G4HepEm/HepEmShow, 1k events per data point.

Even though the "noise" has a low magnitude, its derivative can have a large magnitude! The derivative can also be zero with probability 1. . .

Which one of these?

- If is the variance of the derivative sufficiently low? Otherwise we'd have to average over too many events to get a trustworthy result. . .
- When we average the derivative where it exists, do we get the derivative of the averages?
- Can the AD derivatives be useful for optimization?

$\frac{\partial$ (Energy Deposition)
∂ (Primary Particle Energy) for the fully detailed simulation

Applied the AD tool CoDiPack (took ∼3 days).

$\frac{\partial$ (Energy Deposition)
 $\frac{\partial$ (Primary Particle Energy) for the fully detailed simulation

Applied the AD tool CoDiPack (took ∼3 days).

$\frac{\partial$ (Energy Deposition)
 $\frac{\partial$ (Primary Particle Energy) for the fully detailed simulation

Applied the AD tool CoDiPack (took ∼3 days).

Look at the vertical axis range. These noisy derivatives can hardly be useful.

\rightarrow Deactivate multiple scattering in the simulation.

**11 Scientific
11 Computing**

University of Kaiserslautern-Landau (RPTU)

$\frac{\partial$ (Energy Deposition)
 $\frac{\partial$ (Primary Particle Energy) with simplifications

multiple scattering disabled

This looks much better!

University of Kaiserslautern-Landau (RPTU)

$\frac{\partial$ (Energy Deposition)
 $\frac{\partial$ (Primary Particle Energy) with simplifications

AD at 10 GeV Diff.quot. at 9.9. 10.1 GeV multiple scattering disabled

This looks much better!

What about other AD inputs?

$\frac{\partial$ (Energy Deposition)
∂ (Absorber Thickness) with simplifications

AD at 2.3 mm Diff.quot. at 2.29. . . 2.31 mm multiple scattering and fluctuation disabled

Scientific Computing

AD at 5.7 mm Diff.quot. at 5.65. . . 5.75 mm multiple scattering and fluctuation disabled

Good agreement as well.

Scientific Computing

AD at 5.7 mm Diff.quot. at 5.65. . . 5.75 mm multiple scattering and fluctuation disabled

Good agreement as well.

Going back to the $\frac{\partial \text{ (Energy Deposition)}}{\partial \text{ (Primary Particle Energy)}}$ plot: Let's reduce the step size of the difference quotient to reduce the truncation error. Let's take more events to make the error bars smaller.

Scientific 3 Computing

The \sim 5% deviation is small but statistically significant.

Hypothesis: The 5% bias has to do with this \longrightarrow There is a novel method⁵ to handle some of these constructs; implementation will be lots of work.

```
double p = \sqrt{\frac{k}{\pi}} \frac{di}{\pi} f' ab \leq \frac{k}{\pi}if ( rng->flat ( ) \langle p ){
   // ... do something ...
}
```
⁵G. Arva et al. Automatic Differentiation of Programs with Discrete Randomness. NeurIPS 2022.

Gradient-Based Optimization Problem

Given a

- primary energy e and
- **absorber thickness a.**

HepEmShow computes the resulting edep distribution $f_i(e, a)$ in the layers $i = 0, \ldots, 49$.

Given $f(e^*, a^*)$ (e.g. measured), can we infer e^* , a^* ?

 \rightsquigarrow For the loss function

$$
L(e, a) = ||f(e, a) - f(e^*, a^*)||_2^2,
$$

find min_{e,a} $L(e, a)$!

Gradient-Based Optimization Setup

$$
\underbrace{\frac{\partial L}{\partial(e,a)}(e_i,a_i)}_{2\times 1} = \underbrace{\frac{\partial L}{\partial f}(f(e_i,a_i))}_{1\times 50} \underbrace{\cdot \frac{\partial f}{\partial(e,a)}(e_i,a_i)}_{50\times 2}
$$

Starting with some (e_0, a_0) , iteratively,

 \blacksquare Evaluate $f(e_i, a_i)$, i.e. run HepEmShow without AD,

2 Evaluate
$$
\frac{\partial L}{\partial f}(f(e_i, a_i)) = 2(f(e_i, a_i) - f(e^*, a^*))^T
$$
,

- 3 Evaluate the vector-jacobian product (vjp) with $\frac{\partial f}{\partial (e,a)}(e,a)$, i.e. run HepEmShow with reverse-mode AD.
- 4 Gradient descent step with step-sizes λ_e , λ_a :

$$
e_{i+1} = e_i - \lambda_e \cdot \frac{\partial L}{\partial e}(e_i, a_i)
$$

$$
a_{i+1} = a_i - \lambda_a \cdot \frac{\partial L}{\partial a}(e_i, a_i)
$$

Gradient-Based Optimization Results

Gradient-Based Optimization Results

350 gradient descent steps with $\lambda_e=1$, $\lambda_a=10^{-7}$ mm 2 MeV $^{-2}$, 1000 events per iteration. Starting from $e_0 = 22000 \text{ MeV}$, $a_0 = 3 \text{ mm}$, converging to the minimizer $e^* = 10000 \text{ MeV}$, $a^* = 2.3 \text{ mm}$.

Gradient-Based Optimization Results

350 gradient descent steps with $\lambda_e=1$, $\lambda_a=10^{-7}$ mm 2 MeV $^{-2}$, 1000 events per iteration. Starting from $e_0 = 22000 \text{ MeV}$, $a_0 = 3 \text{ mm}$, converging to the minimizer $e^* = 10000 \text{ MeV}$, $a^* = 2.3 \text{ mm}$.

Paths are stochastic, of course.

- If is the variance of the derivative sufficiently low? Otherwise we'd have to average over too many events to get a trustworthy result. . .
- When we average the derivative where it exists, do we get the derivative of the averages?
- Can the AD derivatives be useful for optimization?

- If is the variance of the derivative sufficiently low? Otherwise we'd have to average over too many events to get a trustworthy result. . . When disabling multiple scattering, the variance is OK.
- When we average the derivative where it exists, do we get the derivative of the averages? Not exactly, but up to 5% , which is fine for optimization.
- Can the AD derivatives be useful for optimization? Yes!

Scientific Computing

Summary

Integrating AD capabilities in HEP detector simulations works in principle, and can be worthwhile

- **from** an application perspective: to understand how design parameters affect objective functions, and enable efficient gradient-based optimization; probably there are more applications than that;
- **from a AD research perspective:** To our knowledge, no tooling for unbiased AD of generic Monte-Carlo codes available so far.

The community should always keep alternative approaches in mind:

- numerical differentiation
- **gradient-free optimization**
- differentiable surrogate models

Next Steps

- \blacksquare Find out what the problem with MSC is.
- Scale this work from G4HepEm/HepEmShow to Geant4.
- Use the derivatives for scientifically challenging questions such as detector design.

Contact Information

Max Aehle, <max.aehle@scicomp.uni-kl.de>,

Nicolas R. Gauger, <nicolas.gauger@scicomp.uni-kl.de>

Scientific Computing Group University of Kaiserslautern-Landau (RPTU)

Joint work with Mihály Novák, Vassil Vassilev, Lukas Heinrich, Michael Kagan and David Lange.

Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic Shower Simulations <http://arxiv.org/abs/2405.07944>

