

Event generation with quantum computers through particle-oriented simulation

Yutaro Iiyama ICEPP, The University of Tokyo

CHEP 2024 October 23, 2024, Krakow

2

Let's develop a quantum event generator!

Why quantum?

Fundamental scaling problems in generators:

• Event complexity scales ~factorially with perturbation order

 10^8

Integration time scales ~exponentially with final \sim // Dicity

3

LO ME level event generation only (Comix; γ , Z, h, μ , ν_{μ} , τ , ν_{τ} off)

 $*$ ^{,†} Number of quarks limited to $\leq 6/4$

Source: [Schultz 2018](https://indico.cern.ch/event/751693/contributions/3183025/)

[Michele Grossi plenary \(yesterday\)](https://indico.cern.ch/event/1338689/contributions/6080116/)

 $\sigma =$

incoming

quarks

M. Grossi -

Why quantum?

Fundamental scaling problems in generators:

- Event complexity scales ~factorially with perturbation order
- Integration time scales ~exponentially with final-state multiplicity

Consequence of simulating a quantum system with classical computers

... because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, ...

Real-time dynamics simulation + shot-by-shot sampling:

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works: *|*0i W OrkS:

* If based on the quantum circuit model of guantum computing

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works: *|*0i W OrkS:

* If based on the quantum circuit model of guantum computing

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works: *|*0i W OrkS:

* If based on the quantum circuit model of guantum computing

Ingredients of a quantum event generator

6

measurement results

Encoding field states: discretization

- Continuous (infinite) space *V* = ∫ *dx*
- Continuous unbounded field value *ϕ*

$$
\Rightarrow \mathcal{H} = \text{span}\left(\left\{ \left| \phi \right\rangle \middle| \phi \in \mathbb{R} \right\} \right)^{\otimes \int dx}
$$

 $(span({0},|1\rangle))$ for fermions)

- Discrete finite lattice $N = L^d$
-

 $\Rightarrow \mathcal{H} = \text{span}(\{ |0\rangle, |1\rangle, ... |K - 1\rangle \})$

- $p_{\text{max}}/p_{\text{min}} \sim L$
- *ϕ*max/*ϕ*min ∼ *K*

• Discrete truncated field values 0,1,…,*K* − 1 ⊗*N*

Discretization parameters determine the expressible dynamic range:

Field-based encoding

Can also encode a Fock representation: $|system\rangle = |k_{p_1}\rangle \otimes |k_{p_2}\rangle \otimes \cdots \otimes |k_{p_N}\rangle (k_{p_i} = 0, ..., 2^n - 1)$

Number of excitations of mode p_1

 \Rightarrow Qubit count: nL^d

For $p_{\rm max}/p_{\rm min}$ = 10 TeV / 100 MeV = 10⁵ and d = 3 we need ~ $10^{15}n$ qubits

Use an *n*-bit quantum register per lattice point per field: $|$ system $\rangle = |j_1\rangle \otimes |j_2\rangle \otimes \cdots \otimes |j_N\rangle$ $(j_i = 0, ..., 2^n - 1)$ Field value at site 1

Alternative: Particle-based encoding

Assign a quantum register to each particle, maximum M particles \rightarrow Field theory as multi-body quantum mechanics

$$
|system\rangle = \mathcal{S}[p_1...p_J \Omega... \Omega]
$$
\nJ occupied slots M-J unoccupied slots

\nSymmetrization (bosons) or antisymmetrization (fermions)

\nSlater determinant

 \Rightarrow Qubit count: $M(d \log_2 L)$ For $p_{\text{max}}/p_{\text{min}} = 10^5$ and $d = 3$ we need $\sim 50M$ qubits

10

→ Can include NxLO contributions with moderate *M* g

Strong coupling: No prescription. Check convergence of observables as $M \to \infty$

How many particles do we need? *g*

Diagram lines = particles.

For weak coupling, $M \sim O$ (order of equivalent perturbative calculation) (*a*)

g

(*d*) *g V* 2 quarks, 3 gluons, 2 V

vab
1

Constructing field operators

 $a_p S | p_1...p...p_J \Omega ... \Omega \rangle = \sqrt{n_p} S | p_1...p_J \Omega \Omega ... \Omega \rangle$

11

$$
a_q^{\dagger} \mathcal{S} | p_1...p_J \Omega \Omega ... \Omega \rangle = \sqrt{n_q + 1} \mathcal{S} | p_1...p_J q \Omega ... \Omega \rangle
$$

Annihilation operator de-occupies one slot..

 $a_q \mathcal{S} | p_1 ... p_J \Omega ... \Omega \rangle = 0 \quad (q \notin \{p_j\}_j)$

or annihilates the ket if no matching occupied slot exists.

Creation operator fills one slot..

 $a_q^{\dagger} \mathcal{S} | p_1...p_M \rangle = 0$

or annihilates the ket if it is maximally filled.

All operators can be expressed with combinations of a and a^{\dagger} \Rightarrow Figure out the implementation of \mathcal{S}, a , and a^{\dagger} !

Proposed implementations

• Barata et al. (PRA 103, 2021)

• Gálves-Viruet and Llanes-Estrada (arXiv 2406.03147)

$$
\mathcal{S}|p_1...p_J\Omega... \Omega\rangle = \frac{1}{\sqrt{\mathcal{N}}} \sum_{P \in \text{perm}(M)} |P(p_1...p_J\Omega... \Omega)\rangle
$$

$$
a_p^{\dagger} = \frac{1}{\sqrt{M}} \sum_j a_p^{\dagger(j)} \text{ where } a_p^{\dagger(j)} \text{ creates a particle in register.}
$$

$$
\mathcal{S}|p_1...p_J\Omega...\Omega\rangle = \frac{1}{\sqrt{\mathcal{N}}} \sum_{P \in \text{perm}(J)} \sigma_P|P(p_1...p_J)\Omega...\Omega\rangle
$$

\n
$$
a_p^{\dagger} = \sum_j \mathcal{T}_{j \leftarrow (j-1)} a_p^{\dagger(j)} \text{ where } a_p^{\dagger(j)} \text{ creates a particle in register } j
$$

\nand $\mathcal{T}_{j \leftarrow (j-1)}$ is a "step (anti)symmetric

12

Only for bosons

ster *j*

Sign of *P*

and is a "step (anti)symmetrizer" *^j*←(*j*−1)

Event synopsis

- State preparation = Create wave packets $\sum_{\mathbf{p}_0,\mathbf{p}_1} \Psi_0(\mathbf{p}_0) \Psi_1(\mathbf{p}_1) \mathcal{S} | \mathbf{p}_0 \mathbf{p}_1 \Omega \dots \Omega$
- Evolution in three time windows
	- $0 < t < t_1$: Adiabatic transition to physical single-particle states $H(t) = H_0 + f(t) H_I$ with $f(0) = 0, f(t_1) = 1$
	- $t_1 < t < t_2$: Evolution with full Hamiltonian e^{-iHt} (scattering)
	- $t_2 < t < t_f$: Adiabatic transition to Fock final states
- Measurement → Each bit string corresponds to a Fock state

Details in Barata et al.

Hamiltonian simulation

• Suzuki-Trotter decomposition (product formula)

14

 $\begin{array}{c} \end{array}$ $\Delta t = t_f/N_{\rm step}$

$$
\exp\left(-i\sum_{k}H_{k}\Delta t\right) = \prod_{k}\exp\left(-iH_{k}\Delta t\right) + \mathcal{O}\left((\varepsilon\Delta t)^{2}\right)
$$

Decompose into small parts implementable with gates

 c, s : polynomial approximations of cos $\&$ sin

Full Hamiltonian is very complex

Computation of a broad range of polynomials $f(x)$ for a given $x \in [-1,1]$

[→] No quantum gate corresponding to *e*−*iH*Δ*^t*

Repeat Δt evolution for N_{step} times

• Block encoding of H + quantum signal processing

Embedding a non-unitary matrix in a larger unitary

Biggest challenges

- Optimality of the encoding? Symmetrizers are complex & non-unitary. Any way around?
- How do we encode gauge symmetry? Gauge theory is not written in the language of particles..
- How do we select final states? A faithful LHC simulation will generate uninteresting events 99.999% of the time
- Circuit depth

Interaction Hamiltonian requires $O(L^d)$ gates per time step / poly degree

15

Dev tool for particle-based quantization

16

<https://github.com/yiiyama/pb2q> Sympy-based toolkit for • Algorithm dev & validation • Numerical calculations • Visualization

18

Demonstration: time evolution in ϕ^4

- Initial state $|1,\!0\rangle \otimes |-1,0\rangle \otimes |\Omega\rangle^{\otimes 4}$
- $\lambda = 1$, m₀=0.1
- Not performing adiabatic turn on / off \rightarrow Lattice too small to form wave packets

Conclusion

- We can use quantum computers for real-time simulation of quantum fields
- Evolve an initial state and measure → quantum event generator
	- Can emcompass N^xLO depending on truncation
	- No integration whatsoever
- Particle-based encoding uses realistic number of qubits
	- Is suitable for sparse problems \rightarrow scattering
- Very early stage, still a lot to figure out
- **• Let's build a quantum event generator together!**

19