Graph-based Full Event Interpretation: a graph neural network for event reconstruction in Belle II GRAFEI - CHEP 2024

Merna AbuMusabh, Jacopo Cerasoli, Giulio Dujany, Corentin Santos

Institut Pluridisciplinaire Hubert Curien University of Strasbourg

22 October 2024

Université de Strasbourg

Table of Contents

Experimental context

2 Graph-based Full Event Interpretation: the GRAFEI

(3) Feasibility study with the search for $B^+ o K^+ \nu \bar{
u}$ at Belle II

4 GRAFEI future

Experimental context

 \bigcirc Graph-based Full Event Interpretation: the GRAFEI

(3) Feasibility study with the search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II

4 GRAFEI future

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future Motivations: B-meson decays with invisible particles

- New physics particles may appear in the loop and modify probability
- Possible significant discrepancy from the standard model prediction
- May have presence of new physics invisible particles in place of ν

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future Motivations: B-meson decays with invisible particles

• Tag side needed to infer information about the signal side (e.g. $B \rightarrow K \nu \bar{\nu}$)

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future

Tagged Anaysis strategies

Hadronic Tagged Analysis (HTA)

 \mathbf{B}_{sig}^+

 B_{tag}^{-}

 e^+

Inclusive Tagged Analysis (ITA)

2 Graph-based Full Event Interpretation: the GRAFEI

(3) Feasibility study with the search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II

<u>Experimental context</u> Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future

Deep learning algorithm: GRAFEI

- Based on a deep graph neural network
- Reconstructs the $\Upsilon(4S)$ decay via the final state particles
- Trained over $\Upsilon(4S)$ decays \longrightarrow No need to hard-code decay channels

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future Overview of the GRAFEI's principles

- Takes as input a fully connected graph representing final state particles
 Nodes = quantities associated to the particles (*p_T*, *p_z*, d*r*, d*z*, charge, ...)
 Edges = relations between the particles (angle between tracks, distance of closest approach)
 - **Global** = the whole event

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future

Overview of the GRAFEI's principles

- Takes as input a fully connected graph representing final state particles
- Uses update functions, $\phi,$ and aggregation functions, ρ
 - $\phi = \mbox{Multilayer}$ perceptrons, update the features of the graph per block
 - $\rho=\mbox{Compute}$ average of the updated features, pass it to the next block

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future Overview of the GRAFEI's principles

- Takes as input a fully connected graph representing final state particles
- $\bullet\,$ Uses update functions, $\phi,$ and aggregation functions, ρ
- Returns a fully connected graph from which we can get mass hypotheses and **Lowest Common Ancestor** (LCAS) matrix elements

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future Lowest Common Ancestor Matrix

- LCAS matrix = representation of a decay tree^{2,3}
- Rows and columns = FSPs
- Elements = Lowest Common Ancestor (LCA)
- Identify them via a class between 0 and 6

Implemetation in software framework

- Use **PyTorch Geometric** for architecture⁴
- Used OPTUNA for hyperparameter optimization⁵
- Public repository available on GITHUB
- \bullet Documentation available on ${}_{\rm BASF2}$ Sphinx

Experimental context

 $\fbox{2}$ Graph-based Full Event Interpretation: the ${
m graFEI}$

(3) Feasibility study with the search for $B^+ o K^+
u ar{
u}$ at Belle II

4 GRAFEI future

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future

State of the art

Figure: from arXiv:2301.06990

$$\mu = \frac{\mathcal{B}(B^+ \rightarrow K^+ \nu \bar{\nu} | exp)}{\mathcal{B}(B^+ \rightarrow K^+ \nu \bar{\nu} | SM)}$$

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or *B* probability, BGEOM, derived from cross-entropy
 - Apply other *preselection cuts* (more details in the backup)
- 2. Train classifier
- **3.** Apply *signal region cut*: BDT output > 0.8

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or *B* probability, BGEOM, derived from cross-entropy
 - Apply other *preselection cuts* (more details in the backup)
- 2. Train classifier
- **3.** Apply *signal region cut*: BDT output > 0.8

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or *B* probability, BGEOM, derived from cross-entropy
 - Apply other *preselection cuts* (more details in the backup)
- 2. Train classifier
- **3.** Apply signal region cut: BDT output > 0.8

Comparison between analyses

Signal purity:

$$\mathcal{P}^{\mathsf{sig}} = rac{\mathit{N}_{\mathsf{sig}}}{\mathit{N}_{\mathsf{bkg}} + \mathit{N}_{\mathsf{sig}}}$$

Comparing efficiencies and signal purities:

	ε [%]	$\mathcal{P}^{sig}[\%]$
HTA	0.4	3.5
ITA	8	0.8
GTA	2.7	1.3

Experimental context Graph-based Full Event Interpretation: the GRAFEI Feasibility study with the search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II GRAFEI future

Comparison between analyses

N.B.: No systematic uncertainties considered in this study.

C. Santos GraFEI - CHEP 2024

Experimental context

2 Graph-based Full Event Interpretation: the GRAFEI

(3) Feasibility study with the search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II

Conclusion and perspectives

- $\bullet \ {\rm GRAFEI}$ is a new approach to inclusive reconstruction
- GTA has a greater signal purity than ITA with a higher efficiency than HTA
- Underline ability to classify rare signal events among numerous background events
- Will improve by optimizing GTA and considering statistical and systematic uncertainties

Figure: Generated by Dall-E - "Could you please generate a picture of a penguin manipulating an artificial neural network ?"

Belle II experiment

Belle II subdetectors

Full Event Interpretation (FEI) algorithm

- Reconstructs the tag side based on a six stages approach using Boosted Decision $\ensuremath{\mathsf{Trees}^7}$
- $\bullet\,$ Need to hard-code decay channels $\longrightarrow~\approx 15\%$ of B decays considered

GRAFEI input features

- Node: (L_{particle})_{particle∈{e,p,μ,K,π}}, p_t.p_z, dr, dz, CLUSTERNHITS, CLUSTERTIMING, CLUSTERE9E25, charge
- Edge: distance of closest approach (doca), cosine of the polar angle $\cos(\theta)$
- Global: NONE

GRAFEI hyperparameters optimization

Hyperparameters	Minimum value	Maximum value	Mode
Learning rate	$1 imes 10^{-5}$	1	LOGUNIFORM
Batch size	32	512	CATEGORICAL
Hidden layer's dimension	64	1024	CATEGORICAL
Number of hidden layers	1	3	INT
Number of GN blocks	1	3	INT
Dropout	0	0.5	UNIFORM

Table: Table summarizing the hyperparameters explored by OPTUNA. "Mode" refers to how the set will be explored: UNIFORM and LOGUNIFORM are self-explanatory since they refer to the distributions of the same name; INT corresponds to a uniform distribution with integer step; CATEGORICAL means that the hyperparameters will be selected in a specified list of values. For "Batch size" and "Hidden layer's dimension", the values can only be powers of 2, meaning that the sets are [32, 64, 128, 256, 512] and [64, 128, 256, 512, 1024]. More information about OPTUNA in reference [5].

GRAFEI hyperparameters optimized

Hyperparameters	Value
Learning rate	$1 imes 10^{-5}$
Batch size	32
Hidden layer's dimension	64
Number of hidden layers	1
Number of GN blocks	1
Dropout	0

GRAFEI probability

$$BGEOM = \left[-\prod_{i=1}^{l} \log \left(\frac{exp(x_{i,y_i})}{\sum_{c=1}^{C} exp(x_{i,c})}\right)\right]^{\frac{1}{l}}$$

where *I* are the elements of the LCA matrix' lower triangle, *C* is the number of classes, $(x_{i,c})_{i \in I, c \in [\![1,C]\!]}$ is the model's output for the *i*-th event and the *c*-th class, and y_i is the true class of the *i*-th event.

Pre-training cuts

- BGEOM > 0.2
- $\mathcal{L}_{\mathcal{K}}$ (sig-side FSP) > 0.9
- $cos\left(heta_{B_{
 m sig, thrust}, ROE_{
 m thrust}}
 ight)>0.9$

GTA classifier

• Optimized hyperparameters:

BDT parameter	Value
Tree depth	5
Learning rate	0.1547
Number of estimators	600
Subsample Ratio	0.8912

• Input variables:

Workflow performances

Let's define the GRAFEI-based Tagging Anaysis (GTA) and its performances:

Selection	Number of signals after the cut	$arepsilon_{ extsf{sig}}[\%]$
GRAFEI event reconstruction	26940105	27.295 ± 0.005
Preselection cuts	14429334	53.607 ± 0.010
Signal Region	2671942	18.517 ± 0.010

 \implies Total efficiency [%]: $\varepsilon^{tot} = 2.709 \pm 0.002$

- P. W. Battaglia et al., *Relational inductive biases, deep learning, and graph networks*, (2018), arXiv:1806.01261.
- [2] J. Kahn et al., Learning Tree Structures from Leaves For Particle Decay Reconstruction, arXiv:2208.14924 [physics] (2022), arXiv:2208.14924.
- [3] L. Reuter, Full Event Interpretation using Graph Neural Networks, MA thesis (Karlsruhe Institute of Technology (KIT), 2022), https://publish.etp.kit.edu/record/22115.
- [4] M. Fey and J. E. Lenssen, Fast graph representation learning with pytorch geometric, (2019), arXiv:1903.02428.
- [5] The optuna package, used for hyperparameters optimization, https://optuna.org/.
- [6] Belle II Collaboration, *Evidence for* $B^+ \rightarrow K^+ \nu \bar{\nu}$ *decays*, (2024), arXiv:2301.06990.
- [7] T. Keck et al., *The Full Event Interpretation*, Computing and Software for Big Science 3, 6 (2019), arXiv:1807.08680.