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Introduction
• CMS detector upgrades for HL-LHC include a new high granularity 

calorimeter (HGCal) in the endcap region

o Inner layers made of silicon (green) w/ copper, tungsten, lead 
absorbers

o Outer layers made of plastic scintillator (blue) w/ copper, steel 
absorbers

o Granularity varies between electromagnetic (CE-E)
and hadronic (CE-H) sections

o Total of ~6M readout channels

• Challenge: this calorimeter takes ~2× longer to simulate than existing
calorimeters (~91K readout channels)
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ML for Simulation
• Replace costly simulation components with generative ML

o FullSim (Geant4): increase throughput, preserve accuracy

o FastSim (parametric): increase accuracy, preserve throughput

 Generative ML: learn probability density of simulated hits
from particle showers

o Highest quality: diffusion models

1. Add known amount of random noise to input training data

2. Learn to predict noise in training data

3. Starting from pure random noise, remove predicted noise iteratively
→ create a new sample from distribution of training data
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CaloDiffusion

• Base architecture: U-net
o Skip connections ensure no loss of information

• Linear self-attention layers applied to each 
convolutional ResNet block
o Allows dimensionality reduction in z to handle 

longitudinal correlations in showers
• + several geometric innovations (next slides)
• Cosine noise schedule for training
• Stochastic sampling algorithm for generation
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(M/N): # filters

• Objective:
o Predict weighted average of noise and denoised

image
• Aim for highest achievable quality first
o Then focus on improving speed
o Wrong answers can be obtained infinitely fast



• Particle showers are not invariant in r or z
o Provide r and z (layer) as extra per-pixel

channels (input features)
o Convolutions become conditional

Geometric Innovations
• Particle showers are invariant & periodic in φ
o Pad in φ so convolutions “wrap around”
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(source)

Shower image

Radial image

Layer image

 Conditional cylindrical convolutions
o Handle inherent features of particle detector geometry, distinct from rectangular images

https://indico.cern.ch/event/1159913/contributions/5062708/


Geometry Latent Mapping: GLaM

• Some calorimeter geometries have different radial/angular bins in each layer
o Can’t directly apply convolutions, which require regular neighbor structure

• Learn forward and reverse embeddings to and from a regular geometry
o Simple matrices C (NxM) and D (MxN)
 C initialized to split or merge cells based on overlap between original and embedded geometries
 D initialized as Moore-Penrose pseudoinverse of C

• Inspired by “latent diffusion” approach
o But not necessarily lower-dimensional representation; can be higher-dimensional
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CaloChallenge Performance
• CaloChallenge: community competition w/

three public datasets (~200K events each):
1. Low granularity (368/533 voxels), irregular

geometry (based on ATLAS calorimeter),
photon & pion showers

2. Medium granularity (6480 voxels),
silicon-tungsten sampling calorimeter,
electron showers

3. High granularity (40500 voxels),
otherwise same as #2

• CaloDiffusion (Phys. Rev. D 108 (2023) 072014): leading performance in accuracy
o But slower inference time, typical of diffusion models (multiple steps required)
o This first version required 400 diffusion steps
 Subsequent versions incorporate improvements to reduce steps while maintaining quality
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C. Krause

https://doi.org/10.1103/PhysRevD.108.072014
https://indico.cern.ch/event/1253794/contributions/5588599/


HGCal Dataset
• 500,000 photon showers
o η = 2.0, φ = π/2, E = 50–100 GeV
o Train: 400K, test: 100K

• Geometry:
o HGCal version 11 from 2019 with 50 total layers (CMS-TDR-022)
o CMSSW_11_3_X, Geant4 version 10.7.1

• Voxelization:
o 20 “rings” of hexagonal cells around generated photon trajectory
o 28 layers (CE-E) × 1988 cells ≈ 56K voxels

• Preprocessing: (Ei = voxel energy)
o Logit transform: ui = log(x⁄1–x), x ≡ δ + (1 – 2δ)Ei

o Standardization: u′i = (ui – ū)/σu
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https://cds.cern.ch/record/2759072


HGCaloDiffusion
• CaloDiffusion model plus:
o Scaled-up U-net (32, 64, 96 filters), 4M params
o LayerDiffusion: separate lightweight diffusion model (5 dense layers with residual connections, 

680K params) to predict total deposited energy per layer
 Improves modeling of global quantities and reduces # steps in inference

o Minimum signal to noise ratio weighting during training (arXiv:2401.13162)
with improved noise schedule (“EDM”, arXiv:2206.00364)

o Deterministic sampling algorithm (“DDIM”, arXiv:2010.02502)
o GLaM adjustments:
 Map to cylindrical geometry w/ 12 angular bins × 21 radial bins = 252 bins

– Compression by a factor of ~7
 Full embedding matrix would be 252 bins × 1988 voxels, per layer
 Fix most elements to zero, only local entries learnable (5×5, ~10K per layer)

o Diffusion steps for generation: 200
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https://arxiv.org/abs/2010.02502


Successes
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Global quantities well-modeled (thanks to LayerDiffusion)

Reasonable agreement 
in maximum voxel per 
layer and average 
sparsity (nE > 1 MeV/nhits)

GLaM allows 
reproduction of 
“sharp” features 
in original 
geometric space



Opportunities for Improvement
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Deficits in sparsity modeling from:
1. “splitting” energy among multiple cells
(first usage of GLaM for compression)
2. “leftover” noise in cells that should be empty

Leads to discrepancies in 
width-related variables
(still being understood)



In GLaM Space
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Examining the same quantities in “GLaM space” 
(compressed cylindrical geometry) shows 
improved modeling

Discrepancies remain 
in a few variables
(still being understood)



Performance
• Classifier score: 0.995

o Train a classifier to distinguish between “real” and generated showers

o Look at area under receiver-operator characteristic curve: 0.5 means indistinguishable

o Inputs: high-level features, such as plots shown previously

• Frechét particle distance: 0.726 (0.002 for Geant4 vs. itself)

o W2 distance between Gaussian fits to high-level feature space

• Kernel particle distance: 0.014 (0.000002 for Geant4 vs. itself)

o Maximum mean discrepancy in high-level feature space

 Discrepancies in some features (e.g. energy vs. R):
noticeable enough to distinguish most generated showers

o Expect improvements in metrics when these discrepancies are resolved
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Outlook
• CaloDiffusion: bleeding-edge industry models and techniques + particle physics domain knowledge

o Denoising diffusion architecture; sophisticated objectives, training schedule, sampling algorithm

o Conditional cylindrical convolutions and GLaM for irregular geometries

• Leading performance on virtually every CaloChallenge metric assessed so far

• Scaling up to CMS HGCal:

o Increases in both dimensionality and irregularity

o Potential solutions to challenges in modeling sparsity and related quantities:

 Reduce GLaM compression or use autoencoder-based latent diffusion

 Dedicated add-on to predict sparsity, similar to LayerDiffusion

• Inference can be improved by reducing number of steps

o Modifying sampler and/or the model

o Batched inference on GPU will naturally provide higher throughput than CPU
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Why Convolutions?
• Convolutions started the modern machine learning revolution (AlexNet, 2012)
o Spatial locality and translational invariance
o Shared weights → fewer parameters, better scaling
o Highly efficient on GPUs: spatial locality implies memory locality

• Ideally suited for computer vision with rectangular images
o Application to irregular geometries requires innovations

• Graph neural networks?
o Pro: natural representation for irregular geometries
o Cons: adjacency matrices consume substantial memory; operations less local/efficient; hard to 

generate arbitrary output (masking technique exists, but difficult to scale)
• Point clouds or transformers?
o Pro: no adjacency matrix consuming memory
o Con: discards useful geometric information, which then must be learned from (often sparse) inputs
 For generative applications, convolutions still have a lot to offer!
o And they can keep up with transformers when trained properly… arXiv:2310.16764
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(source)

https://arxiv.org/abs/2310.16764
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Metrics
• Speed only matters if needed accuracy is achieved
o Wrong answers can be obtained infinitely fast

• Looking at 1D histograms: not good enough!
o Can miss high-dimensional correlations

• Best category: integral probability metrics

o Wasserstein distance W1: F is set of all K-
Lipschitz functions
 Only works well in 1D, biased in high-D

o Maximum mean discrepancy (MMD): F is unit 
ball in reproducing kernel Hilbert space
 Depends on choice of kernel

o Fréchet distance: W2 distance between 
Gaussian fits to (high-D) feature space
 Features can be hand-engineered or obtained 

from NN activations
• Another interesting category: classifier scores
o Train NN to distinguish real vs. generated
o AUC score ranges from 0.5 to 1.0

• Fréchet Particle Distance most clearly 
distinguishes between two similar approaches 
(message passing GAN and generative adversarial 
particle transformer)
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arXiv:2211.10295

https://arxiv.org/abs/2211.10295


CaloChallenge Datasets
• CaloChallenge: common datasets for evaluation & comparison of generative models

o Dataset 1: ATLAS calorimeter, irregular

 Photons (368 voxels), 242K events

 Pions (533 voxels), 241.6K events

o Dataset 2: silicon-tungsten, 45 layers

 Electrons (6480 voxels), 200K events

o Dataset 3: silicon-tungsten, 45 layers

 Electrons (40500 voxels), 200K events

• Preprocessing: (Ei = voxel energy)

o Logit transform: ui = log(x⁄1–x), x ≡ δ + (1 – 2δ)Ei

o Standardization: u′i = (ui – ū)/σu
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CaloDiffusion: Average CaloChallenge Showers

• Top: Geant4; bottom: CaloDiffusion (dataset 1, photons)
o … or is it the other way around? Can you tell?
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[animated version]

https://www.dropbox.com/scl/fi/96j6yr4d4qedfv2au2ney/shower_evolution_final_v2.gif?rlkey=18v7j2fyfd57cqayd46ktjfmd&raw=1


CaloDiffusion: CaloChallenge Dataset 1
• Excellent modeling for 

photon showers

• Some mismodeling of 
low-energy pions

o Could be resolved by 
dedicated 
training/conditioning

o No significant impact 
on shower shape 
variables
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CaloDiffusion: CaloChallenge Datasets 2 & 3
• Very good agreement in shower 

shapes and physically important 
quantities

• So far, have only shown 1D 
comparisons

• Next: further and higher-
dimensional quantification
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CaloDiffusion: CaloChallenge Metrics
• Classifier AUC: train a binary classifier to distinguish between Geant4 and generative model
o 2 hidden layers, 2048 neurons each; 20% dropout after each layer
o Two flavors w/ different inputs: (incident particle energy included in both)
 Low-level: full showers (all voxels)
 High-level: energy in each layer, center of energy and shower width in η and φ

o Compared to CaloScore v2 (undistilled), (i)CaloFlow (teacher)
• Integral probability metrics: Fréchet Particle Distance (FPD), Kernel Particle Distance (KPD)
o High-level shower features used as input

• CaloDiffusion wins in almost all comparisons, with very small distance values
o Generated showers almost indistinguishable from Geant4
o Further comparisons to come in CaloChallenge summary
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† Geant4 self-comparison values subtracted
† (0.008, 0.0005, 0.008, 0.011)

†



CaloDiffusion: Areas for Improvement
• Deficit in total energy modeling

• Need 400 diffusion steps to get acceptable quality

o Still faster than Geant4 (~100s) w/ batching on GPU

• Fewer steps:

o Linear speed improvement

o But even less accurate in
this quantity
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Improvement: More Diffusion!
• Train LayerDiffusion to predict energy deposited per layer (1D diffusion)
o Negligible inference time (200 steps) compared to CaloDiffusion

• Normalize CaloDiffusion output based on LayerDiffusion
o Only if both models predict sufficiently non-zero deposited energy in a layer
 Substantial improvement in total energy modeling
• Number of CaloDiffusion steps can be reduced with no loss of quality
o 4× speedup for Dataset 2! (8× for Dataset 1 & improves low-energy pions)
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Model
(2, electrons)

AUC
(low / high)

FPD KPD E Ratio
Sep. Power

Orig.  (N = 400) 0.56 / 0.56 0.043 0.00010 0.0110
Layer (N = 400) 0.54 / 0.58 0.045 0.00005 0.0017
Layer (N = 100) 0.54 / 0.60 0.076 0.00030 0.0017

N = 400 N = 100



Dataset 2 w/ LayerDiffusion
• Virtually indistinguishable for 4×

fewer diffusion steps
• Improved agreement vs. original 

CaloDiffusion
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N = 400 N = 400 N = 400

N = 100 N = 100 N = 100



Dataset 1 (photons) w/ LayerDiffusion

CHEP 2024 Kevin Pedro 27

N = 400 N = 400 N = 400 N = 400

N = 50 N = 50 N = 50 N = 50



Dataset 1 (pions) w/ LayerDiffusion
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N = 400 N = 400 N = 400 N = 400

N = 50 N = 50 N = 50 N = 50
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