Simulating the CMS High Granularity Calorimeter with ML

Oz Amram (FNAL), **Kevin Pedro** (FNAL) on behalf of the CMS Collaboration October 22, 2024

FERMILAB-SLIDES-24-0278-CMS-CSAID-PPD

Introduction

- CMS detector upgrades for HL-LHC include a new high granularity calorimeter (HGCal) in the endcap region
 - Inner layers made of silicon (green) w/ copper, tungsten, lead absorbers
 - Outer layers made of plastic scintillator (blue) w/ copper, steel absorbers
 - Granularity varies between electromagnetic (CE-E) and hadronic (CE-H) sections
 - Total of ~6M readout channels
- Challenge: this calorimeter takes ~2× *longer* to simulate than existing calorimeters (~91K readout channels)

ML for Simulation

- Replace costly simulation components with generative ML
 FullSim (Geant4): increase throughput, preserve accuracy
 - FastSim (parametric): increase accuracy, preserve throughput
- Generative ML: learn *probability density* of simulated hits from particle showers
 - o Highest quality: diffusion models
 - 1. Add known amount of random noise to input training data
 - 2. Learn to predict noise in training data
 - 3. Starting from pure random noise, remove predicted noise iteratively \rightarrow create a new sample from distribution of training data

Throughput

CaloDiffusion

- Linear self-attention layers applied to each convolutional ResNet block
 - Allows dimensionality reduction in *z* to handle longitudinal correlations in showers
- + several geometric innovations (next slides)
- Cosine noise schedule for training
- Stochastic sampling algorithm for generation

• Objective:

• Predict weighted average of noise and denoised image

Linear Attr

- Aim for highest achievable quality first
 - \circ Then focus on improving speed
 - o Wrong answers can be obtained infinitely fast

Geometric Innovations

Particle showers are invariant & periodic in φ
Pad in φ so convolutions "wrap around"

- Particle showers are *not* invariant in r or z
 - Provide *r* and *z* (layer) as extra per-pixel channels (input features)
 - o Convolutions become *conditional*

Conditional cylindrical convolutions

o Handle inherent features of particle detector geometry, distinct from rectangular images

Geometry Latent Mapping: GLaM

- Some calorimeter geometries have different radial/angular bins in each layer
 - o Can't directly apply convolutions, which require regular neighbor structure
- Learn forward and reverse embeddings to and from a regular geometry
 - o Simple matrices C (NxM) and D (MxN)
 - C initialized to split or merge cells based on overlap between original and embedded geometries
 - D initialized as Moore-Penrose pseudoinverse of C
- Inspired by "latent diffusion" approach

• But not necessarily lower-dimensional representation; can be higher-dimensional CHEP 2024 Kevin Pedro

CaloChallenge Performance

- CaloChallenge: community competition w/ three public datasets (~200K events each):
 - Low granularity (368/533 voxels), irregular geometry (based on ATLAS calorimeter), photon & pion showers
 - 2. Medium granularity (6480 voxels), silicon-tungsten sampling calorimeter, electron showers
 - 3. High granularity (40500 voxels), otherwise same as #2

- CaloDiffusion (*Phys. Rev. D* 108 (2023) 072014): leading performance in accuracy
 - o But slower inference time, typical of diffusion models (multiple steps required)
 - o This first version required 400 diffusion steps
 - Subsequent versions incorporate improvements to reduce steps while maintaining quality

HGCal Dataset

- 500,000 photon showers
 η = 2.0, φ = π/2, E = 50–100 GeV
 Train: 400K, test: 100K
- Geometry:

HGCal version 11 from 2019 with 50 total layers (<u>CMS-TDR-022</u>)
CMSSW_11_3_X, Geant4 version 10.7.1

• Voxelization:

 \circ 20 "rings" of hexagonal cells around generated photon trajectory \circ 28 layers (CE-E) × 1988 cells \approx 56K voxels

Preprocessing: (E_i = voxel energy)
o Logit transform: u_i = log(^x/_{1-x}), x ≡ δ + (1 - 2δ)E_i
o Standardization: u'_i = (u_i - ū)/σ_u

HGCaloDiffusion

- CaloDiffusion model *plus*:
 - o Scaled-up U-net (32, 64, 96 filters), 4M params
 - LayerDiffusion: separate lightweight diffusion model (5 dense layers with residual connections, 680K params) to predict total deposited energy per layer
 - Improves modeling of global quantities and reduces # steps in inference
 - Minimum signal to noise ratio weighting during training (<u>arXiv:2401.13162</u>) with improved noise schedule ("EDM", <u>arXiv:2206.00364</u>)
 - o Deterministic sampling algorithm ("DDIM", arXiv:2010.02502)
 - GLaM adjustments:
 - Map to cylindrical geometry w/ 12 angular bins \times 21 radial bins = 252 bins
 - Compression by a factor of ~7
 - Full embedding matrix would be 252 bins × 1988 voxels, per layer
 - Fix most elements to zero, only local entries learnable (5×5, ~10K per layer)

o Diffusion steps for generation: 200

Successes

Kevin Pedro

Layer number

5

Layer number

25 Layer

Opportunities for Improvement

Deficits in sparsity modeling from:1. "splitting" energy among multiple cells(first usage of GLaM for compression)2. "leftover" noise in cells that should be empty

In GLaM Space

Examining the same quantities in "GLaM space" (compressed cylindrical geometry) shows improved modeling

Performance

- Classifier score: 0.995
 - Train a classifier to distinguish between "real" and generated showers
 - o Look at area under receiver-operator characteristic curve: 0.5 means indistinguishable
 - o Inputs: high-level features, such as plots shown previously
- Frechét particle distance: 0.726 (0.002 for Geant4 vs. itself)
 O W₂ distance between Gaussian fits to high-level feature space
- Kernel particle distance: 0.014 (0.000002 for Geant4 vs. itself)
 - o Maximum mean discrepancy in high-level feature space
- Discrepancies in some features (e.g. energy vs. R): noticeable enough to distinguish most generated showers
 - Expect improvements in metrics when these discrepancies are resolved

Outlook

- CaloDiffusion: bleeding-edge industry models and techniques + particle physics domain knowledge
 Denoising diffusion architecture; sophisticated objectives, training schedule, sampling algorithm
 Conditional cylindrical convolutions and GLaM for irregular geometries
- *Leading performance* on virtually every CaloChallenge metric assessed so far
- Scaling up to CMS HGCal:
 - Increases in both dimensionality and irregularity
 - Potential solutions to challenges in modeling sparsity and related quantities:
 - Reduce GLaM compression or use autoencoder-based latent diffusion
 - Dedicated add-on to predict sparsity, similar to LayerDiffusion
- Inference can be improved by reducing number of steps
 - Modifying sampler and/or the model
 - o Batched inference on GPU will naturally provide higher throughput than CPU

Acknowledgments

- This work was performed with support of the U.S. CMS Software and Computing Operations Program under the U.S. CMS HL-LHC R&D Initiative.
- Additional support provided by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy

Backup

Why Convolutions?

- Convolutions started the modern machine learning revolution (AlexNet, 2012)
 - o Spatial locality and translational invariance
 - \circ Shared weights \rightarrow fewer parameters, *better scaling*
 - o Highly *efficient* on GPUs: spatial locality implies memory locality
- Ideally suited for computer vision with rectangular images
 O Application to irregular geometries requires innovations
- Graph neural networks?
 - **Pro**: natural representation for irregular geometries
 - **Cons**: adjacency matrices consume substantial memory; operations less local/efficient; hard to generate arbitrary output (masking technique exists, but difficult to scale)
- Point clouds or transformers?
 - Pro: no adjacency matrix consuming memory
 - Con: discards useful geometric information, which then must be learned from (often sparse) inputs
- ➢ For generative applications, convolutions still have a lot to offer!
 - And they can keep up with transformers when trained properly... arXiv:2310.16764

Metrics

- Speed only matters if needed accuracy is achieved
 O Wrong answers can be obtained infinitely fast
- Looking at 1D histograms: not good enough!
 O Can miss high-dimensional correlations
- Best category: integral probability metrics

 $D_{\mathcal{F}}(p_{\text{real}}, p_{\text{gen}}) = \sup_{f \in \mathcal{F}} |\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})|$

- *Wasserstein distance* W₁: F is set of all K-Lipschitz functions
 - Only works well in 1D, biased in high-D
- Maximum mean discrepancy (MMD): F is unit ball in reproducing kernel Hilbert space
 - Depends on choice of kernel

- *Fréchet distance*: W₂ distance between
 Gaussian fits to (high-D) feature space
 - Features can be hand-engineered or obtained from NN activations
- Another interesting category: *classifier scores* Train NN to distinguish real vs. generated
 AUC score ranges from 0.5 to 1.0
- *Fréchet Particle Distance* most clearly distinguishes between two similar approaches (message passing GAN and generative adversarial particle transformer)

space		FPD $\times 10^3$	KPD $\times 10^3$	$W_1^M \times 10^3$
	Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05
	MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06
arXiv:2211.10295	GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08

CaloChallenge Datasets

- CaloChallenge: common datasets for evaluation & comparison of generative models 3d view
 - o Dataset 1: ATLAS calorimeter, irregular
 - Photons (368 voxels), 242K events
 - Pions (533 voxels), 241.6K events
 - o Dataset 2: silicon-tungsten, 45 layers
 - Electrons (6480 voxels), 200K events
 - o Dataset 3: silicon-tungsten, 45 layers
 - Electrons (40500 voxels), 200K events
- Preprocessing: (E_i = voxel energy)
 - Logit transform: $u_i = log(x/_{1-x}), x ≡ δ + (1 2δ)E_i$
 - o Standardization: $u'_i = (u_i \bar{u})/\sigma_u$

 $\circ \dots$ or is it the other way around? Can you tell?

CaloDiffusion: CaloChallenge Dataset 1

- Excellent modeling for photon showers
- Some mismodeling of low-energy pions
 - Could be resolved by dedicated training/conditioning
 - No significant impact on shower shape variables

CaloDiffusion: CaloChallenge Datasets 2 & 3

CHEP 2024

- Very good agreement in shower shapes and physically important quantities
- So far, have only shown 1D comparisons
- Next: further and higherdimensional quantification

22

CaloDiffusion: CaloChallenge Metrics

- Classifier AUC: train a binary classifier to distinguish between Geant4 and generative model
 - o 2 hidden layers, 2048 neurons each; 20% dropout after each layer
 - o Two flavors w/ different inputs: (incident particle energy included in both)
 - Low-level: full showers (all voxels)
 - High-level: energy in each layer, center of energy and shower width in η and ϕ
 - o Compared to CaloScore v2 (undistilled), (i)CaloFlow (teacher)
- Integral probability metrics: Fréchet Particle Distance (FPD), Kernel Particle Distance (KPD)
 - o High-level shower features used as input

Classifier AUC (low / high) Dataset CaloDiffusion CaloFlow CaloScore v2

1 (photons)	0.62 / 0.62	0.70 / 0.55	$0.76 \ / \ 0.59$
1 (pions)	$0.65 \ / \ 0.65$	$0.78 \ / \ 0.70$	- / -
2 (electrons)	$0.56 \ / \ 0.56$	$0.80 \ / \ 0.80$	$0.60 \ / \ 0.62$
3 (electrons)	$0.56 \ / \ 0.57$	$0.91 \ / \ 0.95$	$0.67 \ / \ 0.85$

Dataset	FPD^\dagger	KPD
1 (photons)	0.014(1)	0.004(1)
1 (pions)	0.029(1)	0.004(1)
2 (electrons)	0.043(2)	0.0001(2)
3 (electrons)	0.031(2)	0.0001(1)

- CaloDiffusion wins in almost all comparisons, with very small distance values
 - o Generated showers almost indistinguishable from Geant4
 - o Further comparisons to come in CaloChallenge summary

[†] Geant4 self-comparison values subtracted (0.008, 0.0005, 0.008, 0.011)

CaloDiffusion: Areas for Improvement

• Deficit in total energy modeling

• Need 400 diffusion steps to get acceptable quality

• Still faster than Geant4 (~100s) w/ batching on GPU

Dataset 2 (electrons) • Fewer steps: Geant4 CaloDiffusion 400 Steps CaloDiffusion 200 Steps CaloDiffusion 100 Steps Arbitrary units • Linear speed improvement CaloDiffusion 50 Steps • But even less accurate in this quantity Time/Shower [s] 100 CPU GPU Dataset Batch Size Diff. (%) 1 (photons) 9.46.3 (368 voxels)102.00.6-1001001.00.10.8 0.6 1.0 Dep. energy / Gen. energy 1 (pions) 9.86.41 (533 voxels)100.62.01001.00.1Num. Classifier AUC 2 (electrons) 6.2 14.8FPD 1 (low / high) Sep. Power Steps (6.5 K voxels)104.60.60.56 / 0.550.043(1)4000.21004.02000.61 / 0.560.046(1)52.77.13 (electrons) 1 0.69 / 0.590.065(3)100(40.5 K voxels)2.61044.10.83 / 0.67500.110(4)1002.0

CHEP 2024

E Ratio

0.011

0.036

0.079

0.251

Improvement: More Diffusion!

- Train LayerDiffusion to predict energy deposited per layer (1D diffusion)
 Negligible inference time (200 steps) compared to CaloDiffusion
- Normalize CaloDiffusion output based on LayerDiffusion
 - o Only if both models predict sufficiently non-zero deposited energy in a layer
- Substantial improvement in total energy modeling
- Number of CaloDiffusion steps can be reduced with no loss of quality

 \circ 4× speedup for Dataset 2! (8× for Dataset 1 & improves low-energy pions)

Model (2, electrons)	AUC (low / high)	FPD	KPD	E Ratio Sep. Power
Orig. $(N = 400)$	0.56 / 0.56	0.043	0.0001	0.011
Layer $(N = 400)$	0.54 / 0.58	0.045	0.00005	0.0017
Layer (N = 100)	0.54 / 0.60	0.076	0.0003	0.0017

Kevin Pedro

Dataset 2 w/ LayerDiffusion

- Virtually indistinguishable for 4× fewer diffusion steps
- Improved agreement vs. original CaloDiffusion

Dataset 1 (photons) w/ LayerDiffusion

Kevin Pedro

Dataset 1 (pions) w/ LayerDiffusion

Kevin Pedro