Madgraph5 aMC@NLO
on GPUs and vector CPUSs:
towards production

The 5-year journey to the
first LO release CUDACPP v1.00.00

Andrea Valassi (CERN)

on behalf of the MG5AMC CUDACPP development team

CHEP2024, Krakow, 23 October 2024
https://indico.cern.ch/event/1338689/contributions/6015964

cmfﬂ/
\


https://indico.cern.ch/event/1338689/contributions/6015964

The collaborating teams (summer 2024)

CUDACPP plugin core development (NVidia and AMD GPUSs, vectorized C++ on CPUS)

Stephan Hageboeck*
Daniele Massaro*
Stefan Roiser*

Andrea Valassi*
(CERN IT-GOV-ENG)

Olivier Mattelaer*
(UCL Louvain)

Zenny Wettersten*
UCL f& Jorgen Teig* (2023) CEEW
niversité i | Filip Optolowicz (2023) /)

deLouvain

(CERN IT-GOV-INN)

CE/RW
\

NS

*CUDACPP plugin AUTHORS

SYCL plugin (also Intel GPUSs)
WIP: integration into CUDACPP

Taylor Childers
Nathan Nichols
(ANL)

Argonne &

NATIONAL LABORATORY

CMS integration tests
See Jin’s poster for details!

 Focus of this CHEP2024 talk: first release of the CUDACPP plugin

— will give only minimal details about the parallel work on the SYCL plugin

— will show work done for CMS — but see Jin’s poster for details on the work in CMS!
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Motivation and overview
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Event generators: the first step in the HEP simulation chain

Theoretical physics (Feynman diagrams) SIMULATED DATA PROCESSING

(“MONTE CARLO”)

Monte Carlo methods (random numbers)

MC EVENT GENERATION (MC DATA)
Simulate physics process in beam collisions
Output: particles produced in beam collision

MC SIMULATION + DIGITIZATION (MC DATA) \ Foazaa
Simulate interaction of collision products with detector || ' ‘ﬂ;@% :
Output: simulated electronic signals W N
REAL DATA PROCESSING P g

v

RECONSTRUCTION (MC DATA)

Translate electronic signals to
particles passing through the detector particles passing through the detector
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v
ANALYSIS
Compare real data and MC data with statistical methods — measure parameters, search for new processes
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Event generators (1): why accelerate them?

Computing and Software for Big Science (2021) 5:12
https://doi.org/10.1007/s41781-021-00055-1
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ATLAS Software and Computing HL-LHC Roadmap, version 2.1

ATLAS Preliminary
2022 Computing Model
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Sequential processing vs. Data-parallel processing

&

o .
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@

Data-parallel processing

Sequential processing (lockstep processing)

Single Instruction Single Data:

1 input and 1 output per cycle =
for a given instruction m

Single Instruction Multiple Data:
N inputs and N outputs per cycle
for the same instruction

B Instructions

[] Data Two hardware implementations
W Results Ars Technica (March 2000) of essentially the same concept:

T

GPUs - “SIMT” Vector CPUs — SIMD
~Easier to code (CUDA) More difficult to code (C++)
SOAs not strictly needed SOA:s strictly needed
Tolerate lockstep <100% Need strict 100% lockstep

In our work on MG5AMC “CUDACPP” we have targeted

Note: task parallelism (multi-threading, multi-processing) data parallelism on both vector CPUs and GPUs
differs from data parallelism: it exploits a different dimension from the very beginning!
of hardware parallelism (many CPU cores, many nodes...)
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Event generators (2): why CPU vectorization and GPUS?

_ _ See also
» Vector CPUs and GPUs are widely available to HEP now... Andrea Sciaba's
— All of the CPUs in our computing Grid have SIMD (most have at least AVX2) "= Plenary talk
on Thursday

— GPUs are becoming more and more available to us especially at HPC centers

* ... but they are generally very difficult to exploit in most HEP software ®
— Example: Monte Carlo detector simulation has a lot of stochastic branching (makes lockstep processing difficult)

» However: matrix element event generators are ideal software workflows for SIMD and GPUSs!
— Monte Carlo sampling of many data points — Data parallelism with near-perfect lockstep processing!

INPUT 0@

SAME CALCULATION ON DIFFERENT DATA!
(No if-then-else blocks, i.e. no branching)

Lockstep processing

Good for GPUs (SIMT)
OUTPUT and vector CPUs (SIMD

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 7/30



What is a MC ME generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process

MANY different events (‘phase space points”)

For each event:

MC MATRIX
PSEUDO RANDOM ELEMENT
1. RANDOM NUMBERS NUMBERS GENERATOR
Output: random numbers eo00000e (e.g. MG5aMC)
2. PHASE SPACE SAMPLING PHASE SPACE
Input: random numbers . SAMPLING

Output: particle 4-momenta + optional event cuts

3. ME CALCULATION
Input: particle 4-momenta
Output: Matrix Element (ME)

PHASE SPACE

CPU BOTTLENECK
SAMPLING WEIGHTED EVENTS
. OPTIMISATION {EVT_i, W_i}
CUDACPP: speeq up N I WA
the ME calculation :
- *%. MONTE CARLO MONTE CARLO
using GPUs and SIMD § INTEGRATION UNWEIGHTING
% . A ===
T v w s
O CROSS-SECTIONS etc...  UNWEIGHTED EVENTS :ii:
(NB: “Matrix Element” is an >I (AVG W_i, MAX W_i) {(EVI_i, W_i=1} :
< 500000000000000000000000000600000000000000000000000 5

element of the scattering matrix...
not a linear algebra concept!)

(FOR LATER!) Physics output: cross-section and LHE event file
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SHOWERING AND
HADRONIZATION
GENERATORS
(e.g. PYTHIA)

PARTON
SHOWERS

w
HADRONISATION

AND DECAY

PARTICLE
FILTERING

W
DETECTOR
SIMULATION

(GEANT4)
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varix N @ nutshell: we speed up the

gg—ttgg: FORTRAN FE28% “matrix element” (ME) calculation

~ Q7% running time

%Ei;;;: e Daniele Massaro — ESC2024
5 gg—ttgg: CUDA
e
[unk...
* In the old Fortran implementation, the Matrix T
ME calculation was the bottleneck Elerg;nts: EE"E
e mawt. ~ 8% running time
. Th_polint_ cudaDev...
» Using GPUs/SIMD we speed up MEs e . o]
so much that previously unimportant S et i — s
components become the bottleneck! T | o e T
— Phase space sampling, pdf’s, ... = e v e o
— As predicted by Amdahl’s law (later...) MAD
iﬁ;zggﬂaﬁ_callﬁ ain start...
madevent_cuda (1811244) aud. ..
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Architecture overview
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APPLICATION MG5AMC: from single-event to multi-event APls
SINGLE-EVENT MEs
(< 2020 or < MG 3.6.0)

F?:RTRAW = / Then we modified the existing
e First we developed v o vee multievent APre, |
' x the new ME enginesin - 25 - ’
{ RANDOM;IUHBERS } , standalone applications ar_1d we injected CUDACPP MEs
\ into it (to replace Fortran MES)
FORTRAN: 1. STANDALONE
MADEVENT // (TOY) APPLICATION 2. NEW madevent
= g MULTI-EVENT MEs APPLICATION
n (2020_2021) MULTI-EVENT MEs
FORTRAN: (2022)
MATRDG Y} N
L=t Fo RTRAN :
-------- l;l -:A:';JX ELEMENTS \ RANMAR
LW—J \ . SCALAR: NEW

[ RANDOMfNUMBERS } — BOTTLENECK

MATRIX ELEMENT: S \ ¥ (Amdahl’s law)
CPU BOTTLENECK \ FORTRAN:
IN OLD madevent MADEVENT
\ (I E—— _
\ MOMENTA -
\ PARALLEL

------- “En
PARALLEL PARALLEL:

— MUCH FASTER!
MATRIX ELEMENTS

CHEP2024, Krakow, 23 Oct 2024 11/30
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Do's and dont's - two simple lessons learnt for any MC generator

(1) Design computational units using re-entrant functions with well-defined inputs and outputs!
—Beware of hidden inputs and outputs from common blocks and static data...

T |

/ICOMMON/... = | S

ON

) /COMMONY/...

IMO, within MG5AMC this remains an important issue
that complicates the porting to GPU/SIMD

of non-ME components like phase space sampling...

REENTRANT FUNCTION
(NO STATE! THREAD SAFE!)

IN m—p

mm) OUT

* (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!
—Well-defined input array of many events, well-defined output array of many events

1IN sy | PROCESS-oNE=YENT | ) 1 OUT
An additional technicality: prefer Structure-of-Array
(SOA) memory layouts for the inputs and outputs!
[Strictly needed only internally for SIMD and useful for
N IN PROCESS N EVENTS N OUT GPUs, but good to have also in the API of the function]

If vou design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

|
CERN }Y

CHEP2024, Krakow, 23 Oct 2024

/12130



From single-event to multi-event APIs: some specific examples

* 1. MG5AMC at LO: the work described in this talk!
— This was the work necessary on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

« 2. MG5AMC at NLO: the ongoing work described in the next talk by Zenny!
— The general idea (and possibly the interface of the CUDACPP “bridge”) remains the same at NLO as at LO

« 3. POWHEG + MG5AMC: the work we plan to collaborate with!
— This is the work the POWHEG team would need to do on their framework (to interface to the MG5AMC CUDACPP “bridge”)

1IN ‘ w - 1 0UT i ;ﬁ&-ﬁﬁimmu |
— — :EE RAN’MAR i RAN'MAR
; ;;;
:ii FORTRAN: ;!E FORTRAN:
il | MADEVENT | | MADEVENT
N IN PROCESS N EVENTS N OUT ié% m;m I N
IR

MATRIX ELEMENTS

MATRIX ELEMENTS
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MG5AMC: CUDA/C++, Fortran, bash, python... .., wosceiow

Jbin/mg5_aMC

Initially (2020-2022) we focused on individual applications install cudacpp;
3. MANY madevent generate...; output...; launch
In the last two years (2023-2024) we focused more and APPLICATIONSs (2024)
more on the full workflow orchestrating many applications Ibin/generate_events
- testing/optimizing the sharing of work in many processes (2023)
- integrating the full user workflow including installation
1. ONE STANDALONE 2. ONE madevent L Aa—
TOY APPLICATION APPLICATION seraL RANMAI'l
(2020-2021) (2022) FORTRAN: ;
— = 5 e RAHMAR [ RANDOM NUMBERS
-pARAuEL o | N v
RANMAR [ RAHDDHINUMBERS FORTRAN:
. v MADEVENT
FORTRAN: I i
{ RANDOM%NUMBERS } MADEVENT e --_;HO :E"“
FORTRAN: ..'_.—._.'.-.7.':.'.-.'.-.'.-.1.:= 1Iv """" DATA
MADEVENT e -mmm
&E | I— . TR RE R = 1= ¢ DATA
............... i |
MOMENTA B!
PARALLEL PARALLEL ..'_ MATRIX ELEMENTS I
MATRIX ELEMENTS I
PYTHON/ BASH orchestration

MATRIX ELEMENTS MATRIX ELEMENTS PYTHON/ BASH orchestration PYTHON/ BASH code generation (from the CUDACPP plugin)
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Test driven development

oKt

s#% (2-512z) Compare MADEVENT_CPP w1 xsec to MADEVENT_FORTRAN xsec ##%%
xsec from fortran (47.138611968834162) and cpp (47.138611968834169) differ by less than 3E-14 (2,228446849258313e-16)
“#% (3-512z) Compare MADEVENT_CPP x1 events.lhe to MADEVENT_FORTRAN events.lhe reference (including colors and helicities) #%%

OK! events.lhe.cpp.l and events.lhe.ref.l are identical

* | personally think that writing tests is as important as (more important than?) writing implementation code!

» At each stage of development we have been adding new tests — and we still run them (manually and/or in the CI)
— One standalone application: use hardcoded random seeds, compare momenta and MEs to reference files (googletest)

— One madevent application: use same random seeds, compare cross sections and LHE files for Fortran/C++/CUDA MEs
* Require ~bit-by-bit equal results (within numerical precision), this is much more than statistical comparisons!
* This test has been essential for identifying and later fixing a large number of important bugs

— New (2024): the two tests above are now in the CI for many physics processes, including automatic code generation in the CI
— Under development: full workflow with many madevent applications, compare overall cross sections and LHE files as above

4. FULL WORKFLOW
J/binfmg5_aMC

3. MANY madevent i?stall c:da:ppi \
generate...; output...; launcl
APPLICATIONs (2024)

J[bin/generate_events

(2023)

1. ONE STANDALONE 2. ONE madevent
TOY APPLICATION APPLICATION
(2020-2021)

RANDDMINUMBERS

RANDOM NUMBERS
I

Al
v FORTRAN:

FORTRAN:

MADEVENT

MOMENTA
THIH1 || ==
PARALLEL

MOMENTA
DATA

MATRIX ELEMENTS

MATRIX ELEMENTS

MATRIX ELEMENTS

PYTHON/ BASH orchestration

MATRIX ELEMENTS

PYTHON/ BASH orchestration

PYTHON/ BASH code generation (from the CUDACPP plugin)

. Valassi — Madgraph on GPUs and vector CPUs: towards production

Test a large phase space of development environments!
- Different physics processes

- Different vectorization scenarios

- Different floating point precisions

- Different compilers and O/S

Ideally, we will try to port all these ad-hoc manual tests to the ClI
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Some results and new developments
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Amdahl’s law — not a theoretical possibility, we see it all the time!

* The matrix element (ME) calculation was the bottleneck >95% for many processes in Fortran Madgraph
—But non-ME part <5% HAS become the bottleneck after we managed to accelerate MEs by factors O(10-1000)!

- Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)
—If the non-ME part takes 5%, the maximum speedup is limited to x20 even when the ME speedup is infinite!

18

16

14

Speedup

@ https://en.wikipedia.org/wiki/Amdahl%?27s law

Amdabhl's Law

20 7

A few examples on the following slides:

"Complex" physics process
MEs remain the bottleneck
Useful to further speedup the MEs

~
- gg—ttggg: Fortran MEs ~ 99.5% => max speedup is x200
- gg—ttgg: Fortran MEs ~ 95% => max speedup is x20
- Drell-Yan+3):  Fortran MEs ~ 66% => max speedup is x3
v

"Simple" physics process
MEs are no longer the bottleneck
Need to speed up the non-ME part

A. Valassi — Madgraph on GPUs and vector CPUs: towards production
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Results for gg—>ttggg from CUDA on NVidia V100 GPUs

2. ONE madevent
APPLICATION
(2022)

with GPU MEs over scalar Fortran

This is a "complex" physics process

Even after GPU acceleration, MEs remain the bottleneck (11s out of 17s in double precision)
Trying to further optimise the ME calculation is still useful to obtain further overall speedups
Example: increase the GPU grid size (requires work on Fortran too), smaller kernels, etc...

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

madevent standalone
CUDA grid size 8192 16384 Results refer to
S a single CPU core
_ MEs ITOT = IMad + IMEs Nevents/TTOT Nevenss/tMes | [ |
88 11888 ..
precision [sec] [events/sec] [MEs/sec] | [ Ew—

Fortran double 098.1 =44+ 9937 | 8.21El1 (=1.0) | 8.24E1 (=1.0) —
% CUDA/GPU | double /,|16.8 =59+ 10.9|| 4.88E3§(x60) ‘ 7.54E34(x92) § 9.54E3 (x115)
ugJ CUDA/GPU mixed // 14.3=5.7+ 8.6 | 5.72E3 (x70) | 9.49E3 (x115) | 1.16E4 (x141)
<>'E CUDA/GPU ﬂoy/ 10.7=54 + 5.3 | 7.65E3|(x94) || 1.53E4 (x187)|| 2.16E4 (x264)

UAmdahl‘s law: Overall speedup < ME speedup
Overall speedup x60 (double) and x90 (float) ME speedup x90 (double) and x180 (float)

with GPU MEs over scalar Fortran

gg—ttggg
subprocess of pp—tt+3jets)

s 1240 Feynman diagrams
120x120 color matrix

6
60°
6
W

diagram 1 QCD=5, QED=0 7
CHEP2024, Krakow, 23 Oct 2024 18/30



Results for gg—ttggg from vectorized C++ on Intel Gold CPUs

nodes with 2 FMA units

Scalar

SSE4

%Xmm

AVX2

Shymm

2. ONE madevent
APPLICATION

(2022)

Results refer to
a single CPU core

ME speedup x8 (double) and x15 (float)
with AV X512 MEs over scalar Fortran

Our ME engine reaches the
maximum theoretical SIMD speedup!
This is because we have perfect lockstep
during most of the ME calculation!

U Amdahl's law: Overall speedup < ME speedup

Intel Xeon Gold 6326 e
(2 FMA units for AVX512) | g0 5 1icee ME% ITOT = IMad + IMEs Nevents/TOT Nevents/TMEs
o of precision [sec] [events/sec] [MEs/sec]
r't_J Fortran(scalar) double | 854.1=2.8 +851.3 | 9.59E1 (=1.0) | 9.62E2 (=1.0)
e C++/none(scalar) | double | 970.8 = 3.0 + 967.9 | 8.44E1 (x0.9) | 8.46EI (x0.9)
_ C++/ssed(128-bit) | double | 506.8 =2.9+503.9 | 1.62E2 (x1.7) | 1.63E2 (x1.7)
gi?zf = ﬁ&gg me :gg:zgz C++/avx2(256-bit) | double | 235.3=2.8 +232.5 | 3.48E2 (x3.6) | 3.52E2 (x3.7)
! C++/512y(256-bit) | double | 209.6 =2.8 +206.8 | 3.91E2.(x4.1) | 3.96E2 (x4.1
The latter is only better on “NC++/5122(512-bit) | double | 116.8=2.8+114.0 | 7.01E2Hx7.3) || 7.19E2
++/none(scalar) mixed | 983.6=3.0+980.6 | 8.33E1 (x0.9) | 8.35EIl (x0.9)
(here an Intel Gold 6326) C++/sse4(128-bit) | mixed |491.5=2.9+488.7 | 1.67E2 (x1.7) | 1.68E2 (x1.7)
C++/avx2(256-bit) | mixed | 227.8=2.8+199.2 | 3.60E2 (x3.8) | 3.64E2 (x3.8)
C++/512y(256-bit) | mixed | 202.0=2.8 +199.2 | 4.05E2 (x4.2) | 4.11E2 (x4.3)
C++/5122(512-bit) | mixed | 116.6=2.8+113.8 | 7.03E2 (x7.3) | 7.20E2 (x7.5)
C++/none(scalar) float | 943.5=3.0+940.6 | 8.68E1 (x0.9) | 8.71EI (x0.9)
float S Co+/ssed(128-bit) | float | 229.8=2.8+227.0 | 3.56E2(x3.7) | 3.61E2 (x3.7)
double G| C++/avx2(256-bit) | float | 118.9=2.8+ 1160 | 6.89E2(x7.2) | 7.06E2 (x7.3)
— O C++4/512y(256-bit) | float | 106.7=2.8 + 103.9 | 7.68E2 (x8.0) | 7.89E2 (x8.2)
- Z| C++/5122(512-bit) | float 60.6 =28+ 57.8 | 1.35E3[x14.1)]| 1.42E3[(x14.7)
float | float | float | float float | float | float
double double double double
Overall speedup x7 (double) and x14 (float)
float | float | float | float float | float | float | float | float | float | float | float | float | float | float

AVX512

Y%zmm

double

double

double

double double

double

double

double

64

128

256

512
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Floating point precision — constraints on GPU hardware

 Previous slides: if we could use floats instead of doubles, our MEs would be a factor 2x faster!
—Our vectorized C++ is 2x faster on CPU (e.g. AVX512: a 512-bit register holds 16 floats but only 8 doubles)
—Our CUDA is 2x faster on V100's (on NVidia data-centre GPUs, the FP64 FLOPs are x1/2 the FP64 FLOPS)

 But we need double precision for Feynman diagrams (single precision gives numerical instabilities)
—This means that we cannot use consumer-grade GPUs (on T4's, the FP64 FLOPs are x1/32 the FP32 FLOPS)
—Also: GPUs for Al like Blackwell GB200 do have (a lot of!) FP64, but what you pay are FP4 tensor core FLOPS!

Architecture Blackwell Hopper Ampere Volta
Year 2024 2022 2020 2017
GPU Name NVIDIA GB200  NVIDIA H100 NVIDIA A100 NVIDIA V100
FP64 90 teraFLOPS 34 teraFLOPS 9.7 teraFLOPS 7.8 teraFLOPs
FP32 180 teraFLOPS 67 teraFLOPS ~ 19.5 teraFLOPS  15.7 teraFLOPs
BF16 N/A 134 teraFLOPS 39 teraFLOPS N/A
< |FP16 N/A 134 teraFLOPS 78 teraFLOPS N/A
S FP64 Tensor Core 90 teraFLOPS 67 teraFLOPS ~ 19.5 teraFLOPS N/A
E TF32 Tensor Core 5 petaFLOPS 989 teraFLOPS 312 teraFLOPS N/A
'i‘l FP16 Tensor Core 10 petaFLOPS 1979 teraFLOPS 624 teraFLOPS 125 teraFLOPs
O |BF16 Tensor Core 10 petaFLOPS 1979 teraFLOPS 624 teraFLOPS N/A
I |FP8 Tensor Core 20 petaFLOPS 3958 teraFLOPS N/A N/A
z FP4 Tensor Core 40 petaFLOPS N/A N/A N/A

Stephan Hageboeck

* (En passant: in CUDACPP we do NOT use tensor cores at all — these require a different software API than CUDA cores)

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

https://resources.nvidia.com/en-us-blackwell-architecture

THE CADNA LIBRARY

» Each numbe

r knows its current precision

Filip Optolowicz
Matrix element precision for

400

-999

» We did switch to floats where possible — “mixed-precision”: double for Feynman, float for color matrix
—This is the default in CUDAPP v1.00.00 (even if the speedup over double is limited and still to be improved)
—We also had a closer look at the source of numerical instabilities with the CADNA tool
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Beyond NVidia GPUs

« The CUDACPP plugin uses a single source-code approach for
CPUs (C++) and NVidia GPUs (CUDA), based on #ifdef’s
— The few CUDA calls are encapsulated by design in GPU classes
— We do not use any vendor-specific features (e.g. Streams) yet

V\?’\“\(\

« CUDACPP v1.00.00 includes support for AMD GPUs

through HIP, using the same #ifdef approach
— This was inspired by the LHCb approach to GPUs

— NVidia and AMD provide ~80% of the GPU power in top500 HPCs

» Qur Argonne colleagues are working on extending this to Intel
GPUs via SYCL (based on their earlier work on a SYCL plugin)

https://www.nextplatform.com

S

ﬁ

(13 May 2024)

Accelerated Supers, June 2024 Top500 Peak Total
Systems Share [Teraflops Share Cores Share
1 5.7% 2499680  26.5% f§ 12757568  25.3%
3 1.6% 96,294 1.0% 387.072 0.8%
21% 2,067.806  22.0% 9.613.760 19.0%
83 43.0% 1,462,714 15.5% 9,754,044 19.3%
29 15.0% 2,379,348  25.3% 6,599.000 13.1%
60 3L1% 899.135 9.5% 10994436  21.8%
3 1.6% 12.870 0.1% 360,120 0.7%
Total 193 9,417,847 50,466,000
All Supers 500 12,499,181 114,650,780
Accelerator Share 38.6% 75.3% 44.0%
CPU-Only Share 61.4% 247% 56.0%

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

GPU Teraflops by GPU family
(HPCs in June 2024 Top500)

- NVidia GPUs 50.3%
- AMD GPUs 27.5%
- Intel GPUs 22.0%

/{ Copyright (C) 2@820-2823 CERN and UCLouvain.

// Licensed under the GNU Lesser General Public License (version 3 or later). .
// Created by: J. Teig (Jul 2023) for the MG5aMC CUDACPP plugin. Joergen Te|g' AV
// Further modified by: J. Teig, A. Valassi (2028-2023) for the MGS5aMC CUDACPP plugin.

#ifndef MG5AMC_GPUABSTRACTION H

#define MG5AMC_GPUABSTRACTION H 1

#include <cassert>

#ifdef _ CUDACC__

#define gpuError_t cudsError_t

#define gpuPeckAtlastError cudasPeckAtlastError
#define gpuGetErrorString cudaGetErrorString
#define gpuSuccess cudaSuccess

CUDA

#define gpuMallocHost( ptr, size ) checkGpu( cudaMallocHost( ptr, size ) )
#define gpuMalloc( ptr, size ) checkGpu( cudaMalloc{ ptr, size ) )

#define gpuMemcpy( dstData, srcData, srcBytes, func ) checkGpu( cudaMemcpy( dstData, srcData, srcBytes, func ) )
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice

#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost

#define gpuMemcpyToSymbol( typel, type2, size ) checkGpu({ cudaMemcpyToSymbol{ typel, type2, size ) )

#define gpuFree( ptr ) checkGpu{ cudaFree( ptr ) )
#define gpuFreeHost( ptr ) checkGpu( cudaFreeHost({ ptr } )

#define gpuSetDevice cudaSetDevice
#define gpuDeviceSynchronize cudaDeviceSynchronize
#define gpuDeviceReset cudaDeviceReset

... ) kernel<<<blocks, threads»>>>( _ VA ARGS__ )
) kernel<<<blocks, threads, sharedMem>>>({ _ VA ARGS__ )

#define gpuLaunchkernel( kernel, blocks, threads,
#define gpuLaunchkernelSharedMem( kernel, blocks, threads, sharedMem, ...

#elif defined _ HIPCC

#define gpuError_t hipError_t

#define gpuPeskAtlastError hipPeekAtLastError
#define gpuGetErrorString hipGetErrorString
#define gpuSuccess hipSuccess

HIP

#define gpuMallocHost{ ptr, size ) checkGpu( hipHostMalloc( ptr, size ) ) // HostMalloc better
#define gpuMalloc( ptr, size ) checkGpu{ hipMalloc( ptr, size } )

#define gpuMemcpy( dstData, srcData, srcBytes, func ) checkGpu( hipMemcpy( dstData, srcData, srcBytes, func ) )
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice

#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost

#define gpuMemcpyToSymbol{ typel, type2, size ) checkGpu( hipMemcpyToSymbol( typel, type2, size ) )

#define gpuFree( ptr ) checkGpu( hipFree( ptr ) )
#define gpuFreeHost( ptr ) checkGpu( hipHostFree( ptr ) )

#define gpuSetDevice hipSetDevice
#define gpuDeviceSynchronize hipDeviceSynchronize
#define gpuDeviceReset hipDeviceReset

... ) kernel<<<blocks, threads>>>( _ VA ARGS__ )
) kernel<<<blocks, threads, sharedMem>>>{ _ VA_ARGS__ )

#define gpulaunchKernel( kernel, blocks, threads,
#define gpulLaunchKernelSharedMem({ kernel, blocks, threads, sharedMem, ...

#endif

#endif // MGSAMC_GPUABSTRACTION_H
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https://www.nextplatform.com/2024/05/13/top500-supers-this-is-peak-nvidia-for-accelerated-supercomputers/
https://www.nextplatform.com/2024/05/13/top500-supers-this-is-peak-nvidia-for-accelerated-supercomputers/

AV — CHEP2024

Beyond NVidia GPUs: results with AMD GPUs at LUMI

madevent

- MEs ITOT = IMad + IMEs Ne\'ems/fTOT Nevenls/tMEs
88 = 1188 precision [sec] [events/sec]| [MEs/sec]|
Fortran(scalar) double 266 =1.4+252 | 3.09E3 (=1.0)}| 3.25E3 (=1.0)
C++/none(scalar) double 332=14+31.2 | 247E3 (x0.8)]| 2.58E3 (x0.8)
C++/sse4(128-bit) | double 169=14+15.5 | 485E3 (x1.6)]| 5.28E3 (x1.6)
C++/avx2(256-bit) | double 8.1=14+ 6.7 | 1.01E4 (x3.3)]| 1.22E4 (x3.8)
HIP/GPU double 29=1.8+ 1.1 | 2.88E4 (x9.3)]| 7.69E4 (x24)
C++/none(scalar) mixed 33.2=14+31.8 | 247E3 (x0.8) | 2.57E3 (x0.8)
C++/ssed(128-bit) mixed 16.7=1.4+ 153 | 491E3 (x1.6) | 5.36E3 (x1.6)
C++/avx2(256-bit) | mixed 83=14+ 6.9 | 993E3 (x3.2) | 1.20E4 (x3.7)
HIP/GPU mixed 29=1.8+ 1.1 | 2.88E4 (x9.3) | 7.69E4 (x24)
C++/none(scalar) float 32.1 = 1.4+ 30.8 | 2.55E3 (x0.8) | 2.66E3 (x0.8)
C++/sse4(128-bit) float 92=14+ 7.8 | 8.92E3 (x2.9) | 1.05E4 (x3.2)
C++/avx2(256-bit) float 49=14+ 35 | 1.69E4 (x5.5) | 2.37E4 (x7.3)
HIP/GPU float 24=18+ 0.7 | 3.36E4 (xI1) | 1.20ES (x37)

ggttgg
(subprocess of pp—tt+2jets)

123 Feynman diagrams
24x24 color matrix

diagram 1 QCD=4, QED=0

Overall speedups for gg—ttgg

- X9.3 for MEs on an AMD Instinct MI200 GPU

- x3.2 for MEs on an AMD 7A53 CPU with AVX2
(Amdahl: maximum overall speedup is x20)

One limitation: was unable to build HIP code for
the more complex gg —»ttggg process...

We kindly acknowledge the use of LUMI HPC resources under project 465001114
(“CERN / HEPiX Benchmarking GPU WP” EHPC-BEN-2024B04-053) to produce these results
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Beyond Standard Model physics in MG5aMC CUDACPP @w@&

« CUDACPP v1.00.00 includes support for several BSM processes (at LO): SUSY, HEFT, SMEFT

« Motivation: speed up large productions of BSM processes at LO (for many SM processes NLO is required)
— Need event samples exploring a large parameter space (by event generation or by event reweighting)

« Technical challenge (with respect to SM): non-standard parameters and couplings
— debugged/fixed non-standard code to propagate the running of the QCD coupling o, to these BSM parameters and couplings
— (reminder: for each event, o scale is computed in Fortran and passed to cuda/c++ that computes a.-dependent parameters)

SUSY (MSSM_SLHA2)
gg— 4y

3

1,

Lt

diagram 2 QCD=2, QED=0
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Studies with CMS: understanding Drell-Yan+3jets speedups (1)

« CMS have been the first early adopters of CUDACPP — an extremely useful, mutually beneficial, collaboration!
— See the details of all the studies performed by/within CMS in Jin Choi’s poster

* One of many issues we discussed with CMS: what is the speedup we can achieve from cudacpp in DY+jets?

gi—Tt1 7 ggl
(subprocess of DY+3j)
100 Feynman diagrams
6x6 color matrix

diagram 1

QCD=3, QED=2

AV — CHEP2024

madevent
gu—titTggn MEs trot = IMad + IMEs | Nevens/IToT Nevents/IMEs
(81920 weighted events) | precision |sec] |events/sec| [MEs/sec|
Fortran(scalar) double | 522=17.0+35.2 | 1.57E3 (=1.0) | 2.32E3 (=1.0)
C++/none(scalar) double | 509=17.0+33.9 | 1.61E3 (x1.0) | 2.42E3 (x1.0)
C++/ssed(128-bit) double | 35.5=17.0+18.5 [ 2.31E3 (x1.5) | 4.44E3 (x1.9)
C++/avx2(256-bit) double | 24.5=169+ 7.6 | 3.34E3 (x2.1) | 1.08E4 (x4.7)

C++/512y(256-bit)
C++/512z(512-bit)

CUDA/GPU

double
double
double

239=169+ 7.0
26.7=17.0+ 9.6
176 =174+ 0.3

3.43E3 (x2.2)
3.09E3 (x2.0)
4.65E3 (x3.0)

1.17E4 (x5.0)
8.57E3 (x3.7)
3.26E5 (x140)

C++/none(scalar)
C++/ssed(128-bit)
C++/avx2(256-bit)
C++/512y(256-bit)
C++/5122(512-bit)

CUDA/GPU

mixed
mixed
mixed
mixed
mixed
mixed

509=16.9 +33.9
339=169+17.0
248=172+ 7.6
24.1=17.1+ 7.0
26.5=17.0+ 9.6
17.7=174+ 0.3

C++/none(scalar)
C++/sse4(128-bit)
C++/avx2(256-bit)
C++/512y(256-bit)
C++/5122(512-bit)

CUDA/GPU

float
float
float
float
float
float

50.1 =16.9 + 33.1
263=169+ 94
208 =169+ 3.9
206=169 + 3.6
21.7=169+ 4.8
176 =174+ 0.2

1.61E3 (x1.0)
2.41E3 (x1.5)
3.31E3 (x2.1)
3.40E3 (x2.2)
3.09E3 (x2.0)
4.64E3 (x3.0)
1.64E3 (x1.0)
3.11E3 (x2.0)
3.94E3 (x2.5)
3.99E3 (x2.5)
3.78E3 (x2.4)
4.66E3 (x3.0)

2.41E3 (x1.0)
4.82E3 (x2.1)
1.08E4 (x4.7)
1.18E4 (x5.0)
8.57E3 (x3.7)

3.23E5 (x138)

2.47E3 (x1.1)
8.70E3 (x3.7)
2.12E4 (x9.1)
2.27E4 (x9.7)
1.71E4 (x7.3)
4.46ES (x191)

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

For one typical subprocess of DY+3jets:
Fortran MEs ~ 67% of the total time
=> Max overall speedup is x3 (Amdahl)

Achieved speedups (mixed FP precision):
- x3.0 on GPU (NVidia V100)
-x2.2 on SIMD ("512y" on Intel Silver)

NVidia V100 GPU r-‘—l
intel)
Intel Xeon Silver 4216 %:J .
(1 FMA unit for AVX512) =
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Studies with CMS: understanding Drell-Yan+3jets speedups (2)

* Non-ME is 33% of overall Fortran time (max speedup x3): what exactly takes time? => Profiling!

— The answer is: Fortran phase space sampling is now the bottleneck for DY+3j (93s out of 177s overall with C++ MES)

pp_dy3j.mad//fortran/output.txt

[GridPackCmd.launch]

[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent

COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS ]
COUNTERS]
COUNTERS ]

GRIDPCK
PROGRAM

TOTAL 447.7169 seconds
TOTAL 443.48

Fortran
Fortran

Other 6.5439
Initialise(I/0) 4.4648

Fortran

Random2Momenta 93.2692

Fortran
Fortran
Fortran
Fortran
Fortran

PDFs 8.2697
UpdateScaleCouplings 7.3142
Reweight 3.6975
Unweight(LHE-I/0) 4.8636
SamplePutPoint 8.3255

Fortran
OVERALL

MEs 306.731

NON-MEs 136.748] FORTRAN

OVERALL

MEs 366.731

AV — preliminary!

 Profiling above is via code instrumentation (complementary to perf/flamegraph sampling profiling)
— Inserted low-overhead rdtsc counters in madevent internal fortran calls (still being tuned!)
— Keep, parse, aggregate all madevent logs from many processes in the python/bash orchestrator

Overall:
- Fortran 447s
- C++ 177s (speedup x2.5)

Matrix elements:
- Fortran 307s
- C++ 36s (speedup x8)

Non-ME (overall - ME):

- (Same for Fortran/C++)

- Total non-ME 140s

- Phase space sampling 93s

pp_dy3j.mad//cpp512z/output.txt

[GridPackCmd. launch]

[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent

COUNTERS ]
COUNTERS]
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS
COUNTERS

e ed d e ed ed ed ed ed beed bd

GRIDPCK TOTAL 176.8891 seconds
PROGRAM TOTAL 172.637

Fortran Other 6.5768

Fortran Initialise(I/0) 4.486
Fortran Random2Momenta 93.2907
Fortran PDFs 8.2998

Fortran UpdateScaleCouplings 7.2827
Fortran Reweight 3.7045

Fortran Unweight(LHE-I/0) 4.8719
Fortran SamplePutPoint 8.2892
CudaCpp Initialise ©.3619

CudaCpp Finalise 9.0221

CudaCpp MEs 35.4557 C++
OVERALL NON-MEs 137.181 AVX512
OVERALL MEs 35.4557

— Not yet merged in mg5amcnlo or cudacpp but might be added in upcoming versions

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

”’//’,,/V

FYTHON/ BASH code generation (Irom the CUDACF plugin)
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. . |
Old technique, renewed interest! {REX acceleration for /1= >J*1= + nj

100k events, vectorised C++ on avx2

Reweighting

|'M(mW:FWJp;lep123pr3’.pli4) | 2
L (my© . L3 ptl i pi o)) 1

wi(mWSFW) =

N
u

L 10t

ALEPH Collaboration, f\ﬁ:aar/m:n! of the W mass by
eTe” i

1. Generate signal sample at ., with w,(8,.,)=1 ‘
(By definition, background does not depend on 6) Fert. 473 (1005) 351 (.m;1;’mZ;TIZ;?&;‘,-KLELZTZ(?;,‘JUEJ;‘L:

2. Full detector simulation |
(MC truth event properties x,("'¢) — observed event properties Xx;)

N
o

w
[

Events per 1.5 GeVic®
=1

25

Number of reweighting iterations
(=
(9)]

3. Reweight each event by matrix element ratio .
true true) |2 B
w; (0) = Prob ) (x| t ) IM(.x rt“ ol o

5k 5

PrOb(gref) (X?(t rue)) ‘M(Qref’ XZ( rue))‘2 O =S8 70 72 74 76 78 80 82 84 86
M,, (GeV/c)) 0j 1j 2j 3j
Number of jets
« Two advantages: lower costs (no detector simulation), fewer statistical fluctuations R e o ;J;g;lgg;*

— Interest in CMS for EFT studies (exploration of large space of model parameters)

N
ul

L1t

* In practice for MG5AMC.: read in LHE file, add weights, write back modified LHE file
— Reweighting using the new ME engine in CUDA/C++ provides O(x10) speedups!
— Zenny's "tREX" is essentially ~ready to be included in an upcoming CUDACPP v1.01

N
o

=
o

One further possible application: weight derivatives in parameter measurements
— My suggestion: save weight derivatives (w.r.t measured parameter) in LHE files
— Use them to compute ideal measurement error or for weight derivative regression

Number of reweighting iterations
(=]
u

ul

Zenny Wettersten

— See https://doi.org/10.1051/epjconf/202024506038 and https://zenodo.org/records/11120823 0j 1j 2j 3j

Number of jets
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A tale of two repositories

Our work of the last 5 years
Is mainly here!

/
mg5amcnlo madgraph4gpu (will be moved and renayé!)
https://github.com/mg5amcnlo/mg5amcnlo https://github.com/madgraph5/madgraph4gpu
» the MG5AMC repo (previously launchpad) » the CUDACPP plugin (cuda/c++ codegen)

» python framework, fortran codegen * (legacy stuff — code, logs... — to be removed)

» permissive NCSA-style license * more restrictive LGPL license

Users download this repository (Developers download this repository)

Users install cudacpp as a tarball < Release tags are packaged as tarballs

(A specific commit is in madgraph4gpu) » (Developers find mg5amcnlo as a git submodule)

* For more details:
— Our wiki: https://github.com/madgraph5/madgraph4gpu/wiki/Working-with-cudacpp-v1.00.00-(October-2024)
— Our bi-weekly development meetings: https://indico.cern.ch/cateqory/12586
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The long journey to the v1.00.00 CUDACPP release — some steps

First commit! (Feb 2020) sr

Inject CUDA/C++ NVidia / AMD Tarball install. Release tag!

into Fortran GPU abstraction (Oct 2024) Aviom
(2021-2022) (2023-2024) iTiAv

AOSOA, SIMD vectorization (Dec 2020) Av AVIOM/SR

#ifdef _clang__

roiser committed on Feb 17, 2020

initial commit eemumu
9F2d7a3

2 weeks ago cudacpp for3.6.0_v1.00.00

CtIOnS

Cr+ SIMD: goe / clang R aam— Version tag cudacpp_for3.6.0_v1.00.00 (changelog)

compiler vector extensions ****
typedef fptype fptype_v _ attribute__ ((vector_size (neppV*sizeof(fptype))));
wendif

> cudacpp_for3...

© 2620845 Validated for mg5Samcnlo version 3.6.0 (commit 55a291d

E | RANDOM NuMBERS

Compare ~

Set up a github CI (Jan 2021) sH

[C1] Add GPU build to Cl configuration.

[ hageboeck committed on Jan 28, 2021

This is a release tag: you may install the (atest release tag

cudacpp_for3.6.0_latest as follows

1G53 _aMCxinstall cudacpp

20

20
o8 zciol)

bo oduie ede o L0

- Code Test x-sections and LHE files Fortran vs Cudacpp (2022-2024) av
|nceptIOﬂ . Physics Event Generator Computing Workshop generatIOn — — — - —
HSF WOI’kShOp (NOV 2018), . e . \&Q #%% (2-512z) Compare MADEVENT_CPP x1 xsec to MADEVENT_FORTRAN xsec #*#%

HSF paper (2019_2020) — '57,"7"2 ) v JC] (O(A:E//ZO?AZ:L) OK! xsec from fortran (47.138611968834162) and cpp (47.138611968834169) differ by less than 3E-14 (2.2204468492583132-16)
LHCC review (2020 2021) (Gpuspa“d"ef"’"j;i°"’ / W #%% (2-512z) Compare MADEVENT_CPP x1 events.lhe to MADEVENT_FORTRAN events.lhe reference (including colors and helicities) #++
::GIZA::TME - \\ m 7ngﬂ_;';‘ﬁ::mt€:,;u£&";ﬂ‘:|;m CK! events.lhe.cpp.l and events.lhe.ref.l are identical
Challenges in Monte Carlo Event Generator Software Amomxlcally generated code
for High-Luminosity LHC Lum: ‘*N:“ 'é';‘m“ : . B M 2 24 AV

Running couplings (20 3)
Memory buffers (Apr 2022) om/sR/IAV
s DOUBLE PRECISION G, ALL_G{nb_page)
Memory access COMMON/STRONG/ G, ALL_G

Kernel launchers
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Conclusions

» The first release of the MG5AMC CUDACPP plugin for LO processes has been delivered!

We speed up the matrix element (ME) calculation via data parallelism with excellent lockstep processing
— On NVidia and AMD GPUs in the order of x100 to x1000
— On vector CPUs we achieve the theoretical speedup limit of x8 for AVX512 SIMD in double precision

We achieved overall speedups between x3 and x70 (for DY+3j and gg—ttggg) depending on the physics process
— For many processes (like DY+3)) we speed up the ME so much that the bottleneck is the non-ME component

Many opportunities for further speedups, especially in the non-ME components (phase space sampling, PDFs...)
— WIP to profile the largest residual bottlenecks and to identify speedup strategies (with/without data parallelism)

We need double precision (FP64) in the majority of floating-point operations
— Using single precision (FP32) would allow a further speedup of MEs by a factor ~x2 but leads to numerical instabilities
—WARNING: in the latest GPUs targeting Al like NVidia Blackwell, what you pay for is mainly FP4/FP8/FP16 instead!

Mutually beneficial collaboration with CMS to test our software in production-like environments
— See the details in the poster by Jin Choi on Thursday

The techniques and software used in the LO release were designed with NLO in mind and most can be reused!
— See the details in the next talk by Zenny Wettersten
— More generally, two lessons learnt for any MC: use reentrant functions with well-defined inputs/outputs, use multi-event APIs

|
CERN)Y
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Thanks Krakow!

Thanks to the organizers of this conference

Thanks Staszek
and the whole KORALW/YFSWW team
for everything | learnt from you

E D E 4 " Y f about Monte Carlo’s

Conference on Computing in High Energy and Nuclear Physics

CHEP
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Benchmarking GPUS (CUDA cores or tensor cores? Which FP precision?)

On data-centre NVidia GPUs, in CUDA cores
the FP32 FLOPSs are 2x the FP64 FLOPs

Architecture Blackwell Hopper Ampere Volta
Year 2024 2022 2020 2017
GPU Name NVIDIA GB200 NVIDIA H100 NVIDIA A100 NVIDIA V100
FP64 90 teraFLOPS 34 teraFLOPS 9.7 teraFLOPS 7.8 teraFLOPs
FP32 180 teraFLOPS 67 teraFLOPS  19.5 teraFLOPS 15.7 teraFLOPs
BF16 N/A 134 teraFLOPS 39 teraFLOPS N/A
FP16 N/A 134 teraFLOPS 78 teraFLOPS N/A
FP64 Tensor Core 90 teraFLOPS 67 teraFLOPS  19.5 teraFLOPS N/A
TF32 Tensor Core 5 petaFLOPS 989 teraFLOPS 312 teraFLOPS N/A

8 |FP16 Tensor Core 10 petaFLOPS 1979 teraFLOPS 624 teraFLOPS 125 teraFLOPs

E BF16 Tensor Core 10 petaFLOPS 1979 teraFLOPS 624 teraFLOPS N/A

5| FP8 Tensor Core 20 petaFLOPS 3958 teraFLOPS N/A N/A

z |FP4 Tensor Core 40 petaFLOPS N/A N/A N/A

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

https://resources.nvidia.com/en-us-blackwell-architecture

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

Blackwell GPUs do have many more FP64 FLOPs
in CUDA cores than Hopper or Ampere or Volta...

...but what you really pay for in Blackwell GPUs
are the FP4/FP8/FP16 tensor core FLOPs for Al!

NB: CUDA cores and tensor cores are two
different types of processors on the same chip!
You must develop two different types of software!
(In MG5AMC we do not use tensor cores yet...)

[
CERN }Y
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Speeding up PDF’s

Daniele Massaro — ESC2024
I
]
u
o [A. Buckley et al. Eur. Phys. J. C 75 (2015), p. 132]
gg— ttgg:native PDF - ,
[unknown.14070...
[unknown.140708...
E:t“ [unknown.1407080...
.. [unknown.14070803990. ..
{zx;w [unknown.14070803991...
{unkao... (unknown.14070804070... o . .
E“:‘c'u"‘g - 37% running time libcudan._stalic_ﬂdﬁf?es... 10/{) runnlng tlme
Ih_polint_ cudaDev... cudaDeviceSynchronize
Ih_polin2_ Ih_poli... _ZN9mg... Th_poli... ZNngSanpouZSMa...
nnevolvepdf Ih_polin2_ _ZN9mg... Ih_polin2_ —
fdist_part.0 mnevolvepdf  fbridgeseq... nnevolvepds _ZN9mg5amcGpubBridg. ..
RS idist_part.0 foridgese... xbin_ fdist_part.0 fbridgesequence_
e S ek [ gl fbridgesequence_nomulti... [HEN fin... xbin_
dsigproc_vec_ update scal... gen mom dsigproc_ smatrix1_multi_ re... I cluster_ sample_get_x_ xbin_ [ ]
dsig vec_ X_to_f arg prepare_grou... .
sample_full_ dsigl wvec setclscales one_tree_ sample_g...
‘I\‘/‘J.aAlinN_ dsigproc_vec_ update_scale_coupling vec_  gen_mom_
__libc_start_call_main start... dsig vec_ X_to_f_arg_
‘madevent_cuda (1811244) ad... sample_full_
|
MAIN
main
PDF Use external __libe_start_call_main
H devent_cuda (1814343
interpolation Library LHAPDF madevent_cuda ( )
and A
Daniele Massaro - ESC24 evaluation 10
Next: try GPU implementation of LHAPDF.
Daniele Massaro - ESC24 11
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Vectorizing phase space sampling?

or Madnis?
2] FORTRAN: +  FORTRAN:
X_TO_F_ARG X_TO_F_ARG
FORTRAN: FORTRAN:
NTUPLE (RANMAR) NTUPLE (RANMAR)
- * +
l ﬂudunnlr:blthlo,:l.] ] [ random Il.n:lurln[l'l.l.] ] [ rndunmnhh[ﬂ.-l].-pce-mpuﬁea wector! ]
; § i &
FORTRAM: U FORTRAN:
SAMPLE_GET_X SAMPLE_GET_X
Vs i 10,1116 10,11 re-agper? Vogas geid [0.1] 10 [8.1] re-mapper?
[ random Innibﬂlrlllm.] J [ random number in [0,1] l [ rﬂlflonnllmherhl[ﬂ,ll-wempdnlw ] [ rﬂ‘*)lnmmhﬂ'ln[ﬂ,l]-w!-wla-v?dul ]
¥ 1 ¥ 1 ¥ I
FORTRAN: FORTRAN: FORTRAN:
GEN_MOM GEN_MOM GEN_MOM
ranchoims number [0.1] 1 momenta mapger? randeen nurmber [0,1] 1o mements mappe? {salae) vendom nmmber [8:1] t wemante megppar? (scaler)
5 1 i
l MOMENTA FOR ONE EVENT ] l MOMENTA FOR ONE EVENT ] [ IMCMENTA FaR ORE EVENT ]
10 I
| esssmamssssumsessunmnsses  Loop | —— #: LOOP o LOOP
[ MOMENTA FOR MANY EVENTS J [ MOMENTA FOR MANY EVENTS l [ MOMENTA FOR MANY EVENTS J

* | had a first quick look at possibly vectorizing sample get x
— these are relatively short functions with simple operations, it is not rocket science
» API: could start by preparing baskets and then looping internally as Olivier did for MEs
— the main problem | see is that there are many COMMON’s making this stateful
» can the hidden inputs/outputs requiring these COMMON's be avoided?
» or can these hidden inputs/outputs be moved outside the event/particle loop?

Andrea Valassi — CMS DY +jets, timers/profiling, first sampling improvements 20 August 2024
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Low hanging fruits in sample_get x

+ Identified and fixed a couple of simple possible changes

I I u
- in() functi Il I i len : avoid it! -
—{non-controversial(?) changes fr I ?
« (1) xbin is very often (not always) called with the same arguments, e.g. 0 or 1: cache it! H

= (2) xbin is sometimes called in dead or repeated code, avoid those calls

-| more controversial( ¥ ) changes
= (3) expensive xbin calls take place in some internal checks to issue warnings: are these fjeeded?
— | have the impression this code is not completely functional anyway... (e.g. warning counters loof strange)

—some nice gains from (1) and especially (3)... will give detailé another time

+ Are other improvements possible in the xbin function? M Status: WIP PR eXIStS’
—1 had no time to look at this in more detail than caching it or avoiding it... tO be rediSCU Ssed Wlth O| iVier

« internals look reasonable, there is a binary tree search... but maybe can be improved?

@ Andrea Valassi — CMS DY +jets, timers/profiling, first sampling improvements 20 August 2024

Wz

For the cuda backend is now, skipping xbin checks #968

Phase space sampling in dy+3j has decreased from 78s to 53s (down by 30%) 946b (iSSUG 968)

> IGL ILUPacKUmd,. Taumncn] GRIDPCK TUTAL T35, 1144 “M t ) |” h "
> [madewvent COUNTERS] PROGRAM TOTAL 130.8140s ore con roversia changes’”
> [madewvent COUNTERS] Fortran PhaseSpaceSampling 53.0338s| for 44652395 events . g

> ... Save an additional 30%

> [madevent COUNTERS] CudaCpp HEs 35.4908s for 1769472 events

> [madevent COUNTERS] OVERALL NOH-HEs 95.3232s

> [madevent COUNTERS] OVERALL HMEsS 35.4908s for 1769472 events

For the cuda backend was, including xbin checks but including trivial improvements #969 c

Phase space sampling in dy+3j has decreased from 93s to 78s (down by 15%) 9463 (lssue 969)

< [GridPackCmd. launc GRIDPCK TOTAL . i T

< [madevent COUNTERS] PROGRAM TOTAL 3 60 Non-controversial” changes?
< [madewent COUNTERS Fortran PhaseSpaceSamplin 78.1023s |for 44652395 events

< ma ] P pling Save 15%

< [madewvent COUNTERS] CudaCpp MEs 35.4320s for 1769472 events

< [madewent COUHNTERS] OVERALL HOHN-HEs 120.4290s

< [madevent COUNTERS] OVERALL HEs 35.4320s for 1769472 events

For the cuda backend was in 2eb9ecal00, without trivial improvements

< [GridPackCmd.launch] GRIDPCK TOTAL 176.8891

< [madewent COUNTERS] PROGRAM TOTAL

< [madewent COUHNTERS] Fortran Random?Homenta for 44651014 events

< ..

< [madevent COUNTERS] CudaCpp HEs 15.45587s for 1769472 events

< [madevent COUNTERS] OVERALL NOH-HEs 137.1806s

< [madewvent COUNTERS] OVERALL MEs 35.4557s for 1769472 events

https://github.com/valassi/madgraph4gpu/commit/348664c66d90f4 7d1d9e6fd72d7dd7f4b0fa7cff

EE/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 18

NS
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Issue #2 (no input data)
Data-parallel parad"gms Pseudo-random numbers

Uniform distribution in [0,1]

1 i One event i: vector 7. (dimension d)
(G P US a n d veCto rlzatl on) Draw d X N,,,; numbers r (N,,,, weighted events)
Generators lend themselves naturally "”"”

to exploiting event-level parallelism
via data-parallel paradigms **

Phase space sampling

_ . Ql : For each event i, map 7, to physical phase space x; = H(7})
SPMD: Single Program Multiple The resulting x; are distributed according to a known p.d.f. g(X)
Data (GPU accelerators) Compute the value of g(X,)

- SIMD: Single Instruction Multiple
Data (CPU vectorization: AVX...)

Matrix element* calculation

- The computatfon a ”V intensive For each event i, compute the differenti§I cros;a-sectiun f(x)
part, the matrix element f (¥;), is Compute the weight w.=f (X,)/9 (x:)
the same function for all events i
(in a given category of events)

- Unlike detector simulation (where
if/then branches are frequent and
lead to thread divergence on GPUs)

i e

Monte Carlo integration Monte Carlo unweighting

For each event i, draw r; in [0,1]
Accept if r; < w;/w,,, ..., reject otherwise
— Output: N,,,,,, unweighted events

Average of weights [ = %Z w;
— Output: I (estimator of [ x dx)

Potential interest of GPUs *Note for software engineers: these calculations do involve some
- Faster (cheaper?) than on CPUs linear algebra, but “matrix element” does not refer to that! Here we
- Exploit GPU-based HPCs Us compute one “matrix element” in the S-matrix _(scattering matrix)
MC lide for the transition from the initial state to the final state
ror MG98™ o next >
W|P d WG talk) - **This simple event-level parallelism can also be used as the basis
(p|anﬂ9 for task-parallel approaches (multi-threading or multi-processing)

( \ j\r A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC — 01 Sep 2020
&
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Scientific Computing and Software Collaborations

(or: working en-the-bridge between different units and communities)
In the cracks

* A big lesson learnt from porting MG5AMC to GPUs: you need collaborations with a mix of skills!

» Developing Monte Carlo generator software: which kind of job is this? In which box should it be?

— A scientist’s job? A theorist’s job? An experimentalist’s job? (A computing engineer’s job?) R

—Do we need dedicated Scientific Computing units in our labs and universities? 7

—Do we need to have dedicated career paths similar to Research Software Engineers? T
B |

 The challenge: attracting, training, retaining people with the right competencies and interests

— Can we attract and motivate young theorists to work on software and computing optimizations?

* A theorist colleague | was recently talking to: “We had an opening for working on software optimizations for our Monte
Carlo generator. The only suitable candidates were two theorists. But they were concerned that working on software
optimizations would harm their future careers as theorists and refused the job. In the end, we did not hire anyone.”

— Can we attract and motivate young software engineers to work with us instead of tech or finance companies?

| am only reporting a problem here... | do not have a magic-wand solution ®

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 . )



Helicity amplitudes — same code in CUDA and in vectorized C++

- CUDA: scalar complex —

- C++, no SIMD: scalar complex —

- C++, with SIMD: vector complex —
P X 2,

Formally the same code for three back-ends (cxtype sv represents three types)

typedef thrust::complex<fptype> cxtype; // two doubles: RI
typedef std::complex<fptype> cxtype; // two doubles: RI
class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA)

const cxtype_sv V3[], // input:
const cxtype COUP,

cxtype sv*® vertex ) [/ output: amplitude
{

mghebug( @, _ FUNCTION__ );
const cxtype cI( ©., 1. );

(Fifa] = (F2[2] = (v3[2]

(*vertex) = COUP * - cI * TMPO;
mghebug( 1, _ FUNCTION _ );
return;

}

__device
void FFV1_8( cnnchcxtype_svlFl[]; // input: wavefunctioni[e]
const cxtype_sv F2[], f/ input: wavefunction2[6]

wavefunction3[6]

—

I IXXKXX ]

l. OXXXXX 1

2. FFV1PO_

# 1 FFV1_0:
- DRXXRX helicity amplitude
% revi o || for the yp*u- vertex
.30xxxxx Automatically
al generated!

const cxtype sv TMPO = (F1[2] * (F2[4] * (v3[2] + V3[5]) + F2[5] * (V3[3] + cI = (v3[4]))) +
(F1[3] * (F2[a] * (v3[2] - cT * (v3[4])) + F2[5] * (v3[2]
- v3[5])

- V3[5])) +
- F2[3] * (v3[3] + cI * (v3[4]))) +

“+" is the usual sum of two
(thrust/std) scalar complex,
or the user defined sum of
two vector complex

F1[5] = (F2[2] * (-V3[3]_CI ¥ (va[4])) + F2[3] * (v3[2] + v3[5])))));

inline
cxtype_v operator+( const cxtype v& a, const cxtype v& b )
{

return cxmake( a.real() + b.real(), a.imag() + b.imag{) );

}

#ifdef __clang__

C++ SIMD: gcc / clang

. . 1
compiler vector extensions ****

#endif

typedef fptype fptype_v _ attribute_ ((ext_vector_type(neppV))); //

typedef fptype fptype v _ attribute  ((vector_size (neppV*sizeof(fptype)))); //

RRRR

/

RRRR

7
w A. Valassi — Reengineering MadgraphS_aMC@NLO for GPUs and vector CPUs

vCHEP — 19 May 2021 13

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

tyvpedes sycl:ivec<fptvpe,

* Old slide! The new code is
different, the idea is the same!

 Formally the same code for
CUDA and scalar/vector C++

—hide type behind a typedef
—add a few missing operators

SIMD in CUDA/C++ uses
compiler vector extensions!

Flexible design: being reused also in
the vectorized SYCL implementation

MGONGPU_MARRAY_DIM> fptype_sv;
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C++ vectorization in CUDACPP: overview

* Implementation is based on compiler vector extensions (CVES): explicit vectors of floating point types
— Supported by all of the gcc, clang and (through clang) Intel icpx compilers
— Powerful but easy to use (no debugging auto-vectorization!), intuitive (they force you to design code for vector types!)

#ifdef _ clang__
C++ SIMD- gcc/clang typedef fptype fptype v _ attribute_ ((ext_vector_type(neppV)));
compiler vector extensions " | . .
typedef fptype fptype v _ attribute  ((vector_size (neppV*sizeof(fptype))));
#endif

* Routinely build and compare five vectorization levels on Intel CPUs (and similar features on AMD or ARM CPUSs)

Scalar | fleat .
NONE 1xD, 1xF (scalar) %.m.,.. Float: ~x2 faster than double
ot ot ot | (x2 larger vector of FP values
SSE4 float | fioat . .
Sse4d 2xD, 4xF(128-bit xmm registers, “nehalem” SSE4.2 instruction set) doxmm | aouble | doubte in CPU SIMD vector registers)

float ‘ float | float | float | float ‘ float | float | float

aVvVXZ 4xD, 8xF (256-bit ymm registers, “haswell” AVX2 instruction set)

double double double double

) float | float | float [ float | float | float | float I float

512y 4xD, 8xF (256-bit ymm registers, “skylake-avx512” AVX512 instruction set)

double double double double

float | float | float ‘ float | float | float | float ‘ float | float | float | float | float | float | float | float | float

5127 s8xD, 16xF (512-bit zmm registers, “skylake-avx512” AVX512 instruction set)

double double double double double double double double

0 64 128 256 512

[
CERN }Y
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MG5aMC data parallelism: design for lockstep processing!

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

PSEUDO RANDOM Py
g NUMBERS
9| eso0o00e [\ ~]]
g +
= PHASE SPACE Lo
%5 SAMPLING - i
: MOMENTA
— ]
5 GPU \ tme | I
n
SIMT CPU I A1 ‘ A2 ‘ A3 ‘ Ad I A+4
X ELEME S | SIMD R ||
a2 I Sainan [eo el med] o]
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

A. Valassi — Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024
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Lockstep? MC generators (lucky!) vs MC detector simulation (unlucky)

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

* From a software workflow point of view, these are used in two rather different cases:

LA ROULETTE DE MONTE-CARLO
Régle du Jeu

D,
2\
s
/6]
)
3y

—|  Dataparallelism (NB: MULTI-EVENT API!) |

MC SAMPLING

INPUT Q@

ME event generators*
(before ME calculation):
-  MC integration
(cross sections)
- MC generation
(event samples)

SAME CALCULATION
ON DIFFERENT DATA!

OUTPUT

ﬁ Lockstep processing
Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

Ut MC DECISIONS [Q
Detector simulation (Geant4)
- Particle/matter interaction
DECISION

(when? how?)

@ - Particle decays (when?)

»

A 4

OUTPUT

: : Event generators*
Stochastic branching | (after ME calculation):
Bad for SIMT/SIMD_§ _ MC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production
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ME throughput in C++ for gg—ttgg (on all the cores of a CPU)

ggttgg check.exe scalability on "bmk&130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

Mo HT 2% HT | Overcommit

A | gg—ttgg
] ' (float)

Mo HT 2% HT | Overcommit

gg—ttgg
(float)

&
=t

200 A

ggttgg-sa-cpp-f-inl0-none
gottgg-sa-cpp-finl0-ssed
gottgg-sa-cpp-f-inl0-avx 2
gottgg-sa-cpp-f-inl0-512y
gottgg-sa-cpp-f-inl0-512=z

ggttgg-sa-cpp-f-inld-none
ggttgg-sa-cpp-finl0-ssed
gottgg-sa-cpp-f-inl0-avx 2
ggttgg-sa-cpp-inl0-512y
gottgg-sa-cpp-f~inl0-512=z

1. STANDALONE
TOY APPLICATION
OK! (2020-2021)

100 A

RLXY
LLXX

]

Throughput (E6 events per second)
Throughput ratio to 1 no-S5IMD job

. T T T T T T . T T
0 20 40 60 80 100 120 140 160 0 20 40 60
Level of parallelism {number of 5T jobs) Level of pal

T T
120 140 160
f 5T jobs)

MOMENTA

* Previous tables for SIMD speedups on C++ were for a single CPU core

MATRIX ELEMENTS

» Large SIMD speedups are also confirmed when all CPU cores are used
— AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)
— Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

— Aggregate MEs throughput from many identical processes using the standalone application
» (HEP-workload Docker container from the HEPIX Benchmarking WG)
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Our Iinternal Fortran-to-C++ interface: multi-event and stateless!

O O O 0O O 0O O O O O 60O 60O

Execute the matrix-element calculation "sequence" via a Bridge on GPU/CUDA or CUDA/C++.

PBRIDGE: the memory address of the C++ Bridge
MOMENTA: the input 4-momenta Fortran array
GS: the input Gs (running QCD coupling constant alphas) Fortran array
RNDHEL: the input random number Fortran array for helicity selection
RNDCOL: the input random number Fortran array for color selection
CHANID: the input Feynman diagram to enhance in multi-channel mode if 1 to n (disable multi-channel if @)
MES: the output matrix element Fortran array
SELHEL: +the output selected helicity Fortran array
SELCOL: the output selected color Fortran array

INTERFACE

SUBROUTINE FBRIDGESEQUENCE(PBRIDGE, MOMENTA, GS,

& RNDHEL, RNDCOL, CHANID, MES, SELHEL, SELCOL)

INTEGER*8 PBRIDGE

DOUBLE PRECISION MOMENTA(*)

DOUBLE PRECISION GS(*)

DOUBLE PRECISION RNDHEL(*)

DOUBLE PRECISION RNDCOL(*)

INTEGER*4 CHANID

DOUBLE PRECISION MES(*)

INTEGER*4 SELHEL(*)

INTEGER*4 SELCOL(*)

END SUBROUTINE FBRIDGESEQUENCE
END INTERFACE

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

This outputs the squared sum of
amplitudes (real number)

As discussed with Simon, for
HERWIG and other generators
it may be useful to also expose
an API that gives the patrtial
amplitude (complex number) for
a given colour structure
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AV

Reweighting and weight derivatives in parameter estimation

1 81()?;
« Weight derivative: event-by-event sensitivity to the measured parameter Yilo = (J 89)
v 0

 First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse
—with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

Knowing one’s limits: maximum achievable

information with an ideal detector Niot Stot e
|:> d : _ ideal) __ 2 _ 2 prp— Lo A0 0w
- Ideal acceptance, select all signal events S_,=S,,, | Z, — Vi = Y; Z{deaT) agz =
- Ideal resolution, measured v; is that from MC truth i—1 i—1

(implies ideal rejection of background events, »=0)

» Second: can be used as a basis for an “improved optimal observable” ML method

Data observable

Weight Derivative event properties xPATA _ _
Regression https://doi.org/10.1051/epjconf/202024506038
|:> |:> Fit WDR regressor https://zenodo.org/record/3715951
,Yi(MC truth) — q( Xi(MC) ) qi(DATA) = q( Xi(DATA) )

qM9 = q( M)
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— Memory layouts — AOS, SOA, AOSOA

CUDA/C++: Matrix element calculation (simplified example)

MEKERNELS — inputs[4*Npar*Nevt] = (X,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)
— outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

MATRIX ELEMENTS

Example: Npar=6 patrticles for the 2—4 process gg—ttgg

We have experimented with three possible memory layouts for momenta

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)
We are using AOSOA’s as the current default — but this is still largely configurable

* For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
—We use an AOSOA with Nepp equal to the SIMD vector size NeppV — and an aligned malloc is needed too!
—For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

* For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
—We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)
—For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

« Coding for SIMD is more complex than coding for GPUs...
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Monitoring GPU memory access — NSight Compute

» Explicitly collect two relevant profiler metrics in NSight Compute
—“requests” : [1tex__t requests_pipe_Isu_mem _global op Id.sum
—“sectors” (i.e. transactions, network roundtrips): [1tex_ t sectors pipe Isu_mem_global op ld.sum
—this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

'b eemumuAY_cu_0814_1726_b16384 t32 i12_BASELINE.ncu-rep X :'.b eemumuAV_cu_0814_1725_b16384_t32 i12 SOA.ncutep X l':beemmmAV_cu_Oe14_1721_b16384_t32_i12_AOS.ncufep X

Page: Details v | Launch: 3- 502 -sigmaKin v ¥ ~ AddBaseline |~ | ApplyRules Copy as Image

oS

Current 502 - sigmaKin (16384, 1, 1)x(32, 1, 1) Time: 632.13usecond Cycles: 775,713 Regs: 152 GPU: Tesla V100-PCIE-32G8  SM Frequency: 1,23 cydefnsecond CC: 7.0 Process: [22259] gcheck.exe ® © 0
BASELINE ASA 502 - sigmakKin (16384, 1, 1)x(32, 1, 1) Time: 584.90 usecond Cycles: 716,813 Regs: 152 GPU: Tesla V100-PCIE-32G8 SM Frequency: 1.22 cydefnsecond CC: 7.0 Process: [22731] gcheck.exe

-

~ Command line profiler metrics O

11tex__t_requests_pipe 1lsu _mem_global op_ld.sum [request] 1,527,808 (+0.00%) litex_t_sectors_pipe_lsu_mem_global op_ld.sum [sector] 39,753,533 (+290.86%)

 Profile AOS against the AOSOA baseline
—same number of “requests” in AOS and AOSOA
—AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)
—in other words: AOSOA provides coalesced memory access, AOS does not
—for what it is worth (not much!), the actual slowdown in this e*e™—p*u~ example was only 7% however
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https://github.com/madgraph5/madgraph4gpu/issues/16

Inside the ME calculation: Feynman diagrams, colors, helicities

2
IM| (p)—yj

2

Ae{hel}

ce{col}

2
> M

de{diag}

Given the momenta p of initial+final partons in one specific event
Sum over all helicity combinations A of initial+final partons
Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given A and ¢

In_practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity ) compute partial amplitudes J' for each color ordering permutation f (sum diagrams relevant to f)

(@) =), M)

de{diag}

Example for gg— ttggg: 1240 Feynman diagrams (using helicity amplitudes)
This takes ~40% of the CPU time for this process

2. (for each helicity ) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

IMP()= )

Ae{hel}

|

D L@ (©)fUm)*

fg

Example for gg— ttggg: 120 color ordering permutations, 120x120 matrix
This takes ~60% of the CPU time for this process

3. sum over helicities [Example for gg— ttggg: 128 helicities (before and after filtering)]

Each step computes many events p in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.
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C++ vectorization — why choose Compiler Vector Extensions?

typedef fptype fptype v _ attribute  ((vector_size (neppV*sizeof(fptype))));

Portable — available in gcc, clang, icpx (from clang) with minimal differences
—Do not require any external libraries or tools (VC, VCL, VecCore, xXSIMD, UME::SIMD, or SYCL...)

Powerful, but easy to use
—No need to debug auto-vectorization when it does not vectorize
—As powerful as intrinsics, but much easier to write (higher-level abstractions)

Intuitive — CVESs force you to think in terms of vector types!

Minor disadvantage — no vector complex type out of the box
—But it was easy to write it in our case (RRRRIIII memory layout) as we only need + - x =
— A few extensions for Boolean vector masks were needed, too

One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype Vv*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVES!
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Monitoring lockstep — GPU NSight compute, CPU disassemble

» GPU: explicitly collect one profiler metric in NSight Compute
—"“branch efficiency” : sm__sass_average_ branch_targets threads_uniform.pct

—old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency,
alternative with minor forced divergence has 96% efficiency (and is 20% slower)

3_t256_i1_prof2default.ncurep X ¢h eemumuAv_cu_0513_1107_b2048_t255_i1_prof2divergent.ncurep

Page: Details * Launch: 4- 519 - sigmakin = % * AddBaselne ~  Apply Rules Copy as Image ™
Current 519 - sigmakin (2048, 1, 1)x({256, 1, 1) Time: 475,93 usecond Cycles: 592,229 Regs: 128 GPU: NVIDIA Tesla V1005-PCIE-32GB  SM : 1,24 cydefnsecond CC 7.0 Process: [12414] gcheck.e'e

. NO_DIVERGENCE 519 - sigmakin (2048, 1, 1)x(255, 1, 1) Time: 373.63usecond Cycles: 457,720 Regs: 120 GPU: NVIDIA Tesla V1005-PC 0 second CC 7.0 Process: [12636] gcheck zxe

» Command line profiler metrics

11tex_ t requests_pipe_lsu_mem_global_op_ld.sum [request] l1tex t sectors pine 1su mem olobal oo 1d.sum [sectorl

launch__registers_per_thread [register/thread] 128 sm__sass_gverage_branch_targets_threads_uniform.pct [thread]

» CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)
—but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

. ACAT2022 madevent
#Symbolsin.o [ sspa2 | Avx2 | Avxs12 | Avxs12 RaEe T Scalar [
o S events/fMEs | | double
Build (xmm) (ymm) (ymm) (zmm) —itf .. iy
0 uild type §8 188 precision [MEs/sec] ssEa [ fos [t [ron [rom
'% Scalar 4534 0 0 0 Fortran(scalar) double | 2.30E3 ° e e [
o0 SSE4.2 12916 0 0 0 C++/none(scalar) double o [ caen [ ocm e
N AVX2 0 10630 0 0 C++/sse4(128-bit) | double ot | ot | ot | ot [ ot | 1t st et
o} : 256-bi
8 256_b|t AVX512 0 10366 12 0 C++/‘J'VX2("’56 blt) dOUb]e ﬂull|||o¢t non[nm ﬁontlﬁull ﬂont‘ﬂnat float | float | float | float nm[nn-t 'Ien||laat
o] C++/5 ] 2y(256_b1t) doub]e oooooooooooooooooooooooo double | double | double
<t | 512-bit AVX512 0 1267 60 9910 C++/5122(512-bit) | double
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https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt

Code generation: from many “epochs” to a single evolving “epoch”

MADGRAPH
OLD MODEL

(2020- early 2021)

. and beyond

(1) MG5AMC Python framework, Fortran templates:
“‘upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPRP plugin, post-generation patches,
generated CUDA/C++ physics processes:
our https://github.com/madgraph5/madgraph4gpu

Code generation infrastructure

- Python framework and “cudacpp” plugin WIP to-do before a release:

start new
Hepoch "

\ MADGRAPH
PRODUCE

Stefan

R0|ser

v (4
Aum-seumu
CUDNC++ CODE

@ A. Valassi — Madgraph on GPUs and vector CPUs:

- Fortran, C++, CUDA templates full port from madgraph4gpu

- Post-generation patches (temporary...) [ESRCEaUNECUISI bty
generation Fortran patches,

add CUDACPP upstream)

(3) re-generate

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

NEW MODEL (1) develop on top of auto-generated code
(since end 2021) | (2) backport immediately to code generation infrastructure
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What about loops? And how many are N events?

 You will still need to loop over multiple sets of N events
—And the internal implementation of N-event processing may still involve some loops!

(N x M EVENTS)

4 NIN PROCESS N EVENTS N OUT
LOOP OVER 1..M
- ...0ne more item on our to-
do list for next year...
"Process N events": three implementation examples (there can be more!) (also because so many

1. CPU scalar: internally loop over N events, process each one individually events may lead to biases)

2. CPU vector: hold the events in a SIMD vector of size N,
3. GPU kernel: each of the N events is processed by one of N GPU threads

* N should be at least as big as the minimum number of ev or which strict lockstep is required
—On a CPU: number of variables in a vector reqi most complex case: 16 floats in a 512-bit AVX512 register)
—[On a GPU: strictly speaking, number of threads (typically: 32) in a GPU “warp” ]Mm e

128
s - = | (2560 FPB4 cores)

- Our present implementation: number of threads to “fill” the GPU (typically: 16k, up to 500K) oo

::::::
anananan

* NB: I focus on event-level parallelism, but other options exist
—In MG5AMC we will investigate using 1 GPU thread per helicity per event...

gg—ttgg : 5E5 MEs/s
for 16k MEs in parallel

ThreadsPerBlock * BlocksPerGrid
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Why focus on complex processes? Compute >> memory!

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost
* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

» Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes
— ME calculation on GPU is fast (e.g. e*e—pu*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are ( number of MEs ) / ( time for ME calculation + ME copy )

i ‘ 00 CudaFres (325,083 me] -Il llllllllllllllllllllea&»«S i
1 adarres @m SEIRERE ) (=)
ZOOM (ME calculation ~ ME copy)

efe—>uu

NVTX 0d SGoodHel [1,477 ms] hggum(ssa.zssu-] 3 CpOTHmes [366.033 ps] 4a € umploop [3:875 m4
CUDA AP ) cud: anz Dy )

» But the time cost of data transfers is negligible in complex processes

—ME calculation on GPU is slow (e.g. gg—>_tfgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typica/ LHC collision processes
wx R e o o

chchch

gg—tigg
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* We are lucky: the more
complex the physics process,
the less relevant is the cost of
GPU-CPU data copies!

— Similarly (later): the more
complex the process, the less
relevant is the overhead from
scalar Fortran in madevent!

—And the fewer events in flight
needed to fill the GPU...

e In this talk | mainly give
performance numbers for
complex processes like

gg—>ttgg or gg—tiggg
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Some ideas for heterogeneous processing

E 0.5 - gt00256 Nvidia V100 GPU
3] ilver 4216 4-core CP ‘At ;
% s - Silve 6 4-core CPU Throughput variation as a function of
& GPU grid size (#blocks * #threads)
£ 0.4
2 ..
o 0.3 This is the number of events
— processed in parallel in one cycle
_% 0.2 = ggttgg-sa-cuda-d-inl0 {njobsCPU=1})
g‘ ggttgg-sa-cuda-d-inlD (njobsCPU=2)
_?: 0.1 =~ ggttgg-sa-cuda-d-inld (njobsCPU=4)
= =— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

O-G 'u' LA | T L | T L L | T T T T T

102 103 104 107 106 107

nblocksGPU * nthreadsGPU

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

» Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU
— The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)
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Lockstep beyond event-level parallelism

- Efficient data parallelism (lockstep processing) requires the same function computed for different data
—This is true in MG5AMC at the event level (different events i.e. different phase space points)
—But it is also true at the sub-event level (different helicities within the same event)

* We are evaluating the move to a different data parallelism strategy on GPUs
— Currently: one event (sum over all helicities) per GPU thread
—In the future: one helicity of one event per GPU thread?

(@) =) M)

de{diag}

~

M|~ (p

!

Y (L) (©)F ()¢
Iy

« Advantages:
—You can fill the GPU with much fewer“events in flight” — more balanced sampling/integration in MadEvent
—This is a prerequisite for movingthe color matrix to externally-launched cuBLAS and tensor cores
—This is also a prerequisite it we want to evaluate much smaller kernels

* From all Feynman'diagrams in one kernel to one Feynman diagram per kernel?
» Which might decrease register pressure and increase kernel occupancy, but would require more global memory access
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CUDACPP MEs .o & PF MEs alm~aka [C[kokkos (sYcL.

CUDA

95% common code + a few #ifdef's for CUDA vs C++ Write code once for many CPU/GPU vendors

Designed for NVidia GPUs (so far: will add HIP/AMD) Support NVidia, AMD and Intel GPUs out-of-the-box

— Full feature support, e.g. tensor cores, streams, graphs — Limited support for vendor-specific features
. ' : ' intel
AMD A\ BIESE
NVIDIA. NVIDIA. GRAPH

Designed upfront for SIMD speedups on vector CPUs
Intel®’AVX512

SIMD added via SYCL in Jan 2023, analysing results

WIP on CPU multithreading and heterogeneous modes CPU multithreading out of the box

For the moment: we plan to continue development in parallel using both approaches — comparisons are very useful!
Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs
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https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

CUDACPP vs. Portability Frameworks — recap

« CUDAPP (our initial implementation) is where we add new features first
« The SYCL implementation of MG5aMC is now almost at the same level, the KOKKOS one somewhat behind

* The ALPAKA implementation of MG5aMC is no longer maintained

ME code | Standalone Actively MadEvent | Latest dev

Backend : . o .

generation | application | maintained | application | code base
CUDACPP v v v v v
SYCL v v v v ~v
KOKKOS v v ~v
ALPAKA
(CUPLA) Y Y x x x
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CUDACPP vs PFs - GPU ME throughputs (standalone application)

Variable GPU-grid size (throughput scan) Fixed GPU-grid size (throughput plateau)
NVIDIA A100 — gg_ttgg gg-ttgg
® s ® @ ® ® ® ® ® 106 MW SYCL  mEE Kokkos . WEE CUDA . EEE OpenMP
A Kokkos ® u _ :
—_ Il CuDA bR
*E‘Tm Alpaka @ S )
o 105_
5o e 52
w ©
%8 ® x 3
= N
T = - n
= & Jf-UJ qL)
10*4 = a
tt 16k threads __
(99_ttgg) reads — 256
R R R EEE
nched

Total Threads Lau

» The performances of the SYCL and Kokkos implementations of MG5aMC seem comparable to direct CUDA
— Further comparisons are in progress, performance scales differently with more jets for different backends (next slide)

« SYCL and Kokkos run out of the box also on AMD and Intel GPUs
— They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU
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SYCL vs CUDA throughput for gg_tt on Nvidia A100

o —®
_e— ® —  J
% e
Ezw S
35
24 /
F§ A
= n
.~ | CUDA < SYCL |« —tt
L te]
Gridsize (nBlocksGPU * nThreadsGPU) -
SYCL vs CUDA throughput for gg_ttg on Nvidia A100
o ¢ —o—
_— "
P . -
<% I N I
23 ‘(/ y
£w
Fg —
y CUDA < SYCL |- —>tt
H/ es
Gridsize (nBlocksGPU * nThreadsGPU)
SYCL vs CUDA throughput for gg_ttgg on Nvidia A100
_ B o —9o 0% —9o—
g3 A
2>
£§ 4x10° y a
= / =
CUDA > SYCL |+ gg—)ttgg
/ st |
L
g & g £ ¥ g g g g
¥ b g i S & F § § £
Gridsize (nBlocksGPU * nThreadsGPU)
SYCL vs CUDA throughput for gg_ttggg on Nvidia A100
- _e——® *— —» *«—0
2> ]
=3 —
30 [
g3 /1 CUDA > SYCL gg—)ttggg
»—E /
/ ® test_A100_SYCL_gg_ttggg (max = 1.644e4)
6x10° “_,. test_A100_CUDA_gg_ttggg (max = 2.171e4)

§ & i g

g & &
Gridsize (nBlocksGPU * nThreadsGPU)

§
§
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CUDA vs SYCL on NVidia A100

PRELIMINARY!
N. Nichols, T. Childers (SYCL)
J. Teig (tests/plots)

« SYCL and CUDA implementations have ~similar performances but

—SYCL seems better for less complex processes
—CUDA seems better for more complex processes

* These are very recent results, which are still being digested (WIP!)
— It will be very interesting to understand more in detail what goes on

We plan to also compare more systematically the CUDACPP and SYCL performances
on CPUs (vectorization, multi-core), but it will take time and optimization tweaks... WIP!
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MORE BACKUP
SLIDES
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Code generation: how did we bootstrap the project?

Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more particles in the collision, the more Feynman diagrams and the more lines of code

>_<,< >_<<< >_< >_5< Process LOC functions function calls
- - : = e ete” - utum 776 8 16
>—<<< >—< >—<<< >—< gg — tt 839 10 22 el (1)
>;§2 >;fg >;§2 >;5; gg — g 1082 36 106

gg — ti 1985 222 786  CesCODE |
il A i X 99 > tigg e

DEVELOP
» Goal: modify code-generating code (add CUDA, improve C++ backend) &
— (1) Start simple: bootstrap with e*e— i (two diagrams, few lines of C++"code -

—(2,3) Add CUDA and improve C++, port upstream to Python meta-code L
— (4) Generate more complex LHC processes gg— tt, ttg, ttgg _—— .
epoch”

— Add missing functionality, fix issues, improve performance, iterate
1. IXXXXX 1. IXXXXX 1. IXXXXX 1. IXXXXX
2. FFV1PO_3

PRODUCE
iy (4
3. FFV2_4_0
2. FFV2_4_3
1. OXXXXX 1. OXXXXX 1. OXXXXX 1. OXXXXX

\ AUTO-SENERATED
et uo et M CUDA/C++ CODE

‘(ERN A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021
L

3.7rvie  (b)
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Filling the GPU — minimum number of threads (events in flight)

Matrix Elements / second hitps://doi.org/10.1051/epjconf/202125103045 (vVCHEP 2021)

256
8ES8 128

e 64
e 32

Threads
GEB PerBlock

4E8

2E8

Double precision
NVidia V100
(2560 FP64 cores)

ThreadsPerBlock * BlocksPerGrid

ete—u*u : 7E8 MEs/s
for 524k MEs in parallel

- = e y g
- ] . i (=]

Matrix Elements / second

5E5

4E5

3ES5

2E5

1E5

256

128
e b4
e 32

Threads
PerBlock

Double precision
NVidia V100
(2560 FP64 cores)

gg—ttgg : 5E5 MEs/s
for 16k MEs in parallel

ThreadsPerBlock * BlocksPerGrid

« We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

« But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
—Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event across many kernels)?
—Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?
—Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?
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THE CADNA LIBRARY

Numerical precision: CADNA
» Computers sometimes lie about floating- » P(x,y)= 9x4 - y* + 2y2 (Can we use ﬂoa’ts ”‘]Stead Of dOUblES’?)

point numbers Without CADNA:

P(10864,18817) = 2.0000000000000000 (exact value: 1)

» CADNA is a library with special floating- P(1/3,2/3) = 0.8024691358024691
point types to measure precision and R
instab”ities ih C++ and Fortran P(10864,18817) = @.0 (exact value: 1)

P(1/3,2/3) = 0.802469135802469E+000

» Each number knows its current precision

0 UNSTABLE DIVISION(S) “
0 UNSTABLE POWER FUNCTION (S) B.
. 0 UNSTABLE MULTIPLICATION (S
» CADNA counts unstable operations R s S:“"

0 UNSTABLE MATHEMATICAL FUNCTION(S)

y Coosumivemat CELR g ggzgigtg ég;féégiglggl?g)uoms) Cddnc F ODtOlOWICZ, CERN EP'SFT meetlnq 21 AUQ 2023
https ://l n d | CO . Cern . Ch/eve nt/12 64290/ 8000 Matrix element precision for: epemimupr:'n;.lﬁr?uﬂuat -03 2000 < Matrix element precision for: gg_ttx fI;aet“-O3

60001 LL[I[H:I Floatfor:

S. Hageboeck, Gargnano meeting 18 Sep 2023 o e
ge_ttxg
2000 ge_ttxgg
1000 04 ] ge_ttxggg

o Ap p | I Catl O n to M G 5AM C C U DAC P P : ° ' DEIQItS of sfe(l&lo: SUS'" = Eﬂgn ’ ’ 7 Digits of precision. Sum = 8000
— assess p reCiS i O n Of th e M E Cal Cu Iati o n (Wh e n usi n g . Matrix element precision for: gg_ttxg fSI::: -03 Matrix element precision for: gg_ttxgg :Lc;t -03 Matrix element precision for: gg_“t;?gg float -03

floats: down to 3 significant digits in gg to ttggQ)

— understand where in the code the precision is lost
(typically, cancellations subtracting large terms, one
example being heavily suppressed helicities)

Digits of precision. sum = 8000 Digits of precision. Sum = 8000
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All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

Helicity filtering — at initialization time, compute the allowed combinations of particle helicities
—This is computed in CUDA/C++ using the same criteria as in Fortran

|A;]?
> [ Adl?

‘Multi-channel” — single-diagram enhancement of ME output
—This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

fz' — ‘Atot‘z

Event-by-event running QCD coupling constants o (Q?)
—The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event

Event-by-event choice of helicity and color in LHE files
—Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

—NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)
* We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++
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Benchmarking — Madgraph and the HEP-SCORE project

« HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06
—Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers
—The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

* The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs
—(and ideally measure how well an application is doing compared to the theoretical power of the server...)
—fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

« A first container based on our Madgraph-on-GPU has been prepared
—Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!
—And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

* The plots on the next slides are based on this HEPscore container: several identical copies/processes
— (A multi-threaded CUDACPP version exists but not optimized yet — SYCL and Kokkos also provide MT)
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MG5AMC is not alone — SHERPA on GPU (BlockGen)
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Figure 7: The timings for various GPU-based algorithms are compared as a function

of gluon multiplicity. All algorithms were run on an NVIDIA V100 (16 GB global
memory, 5,120 CUDA cores, 6144 KB 1.2 cache).

From http://dx.doi.orq/10.21468/SciPostPhysCodeb.3

More recent results were presented in June 2023
in Les Houches by Max Knobbe

A. Valassi — Madgraph on GPUs and vector CPUs: towards production

* Note: unlike MG5aMC, based on Feynman diagrams,
SHERPA uses ~Berends-Giele recursion relations

—Allows computations with more final-state jets
* No ongoing effort on CPU vectorization (yet)

* Planned Les Houches project: a detailed comparison
of software performances of MG5AMC and SHERPA

— Tentative process list: pp to tt(0-3jets) or Z(0-3jets)
—Previously, an old wish of the HSF generator WG
—(NB: not a comparison of physics results or distributions)
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Multi-channel

What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes?
Vegas is bound to fail!

Solution: use different transformations = channels
mn mn
p(x) = Z%’pi () with Zai =1
i=1 i=1

with each pi(x) taking care of one “peak” at the time

S f(z) OM
I = [d SN [ B2 apia), , mgongpu
]:r:f(a:) ;a /p(ﬂi) (z) dev meeting
22 Jun 2020

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 @ 67/30



Additional information tracking

» Leading-Color information
= Needed for starting point of the shower
= Can be memory heavy
= Really needed
= Not easy to include as post-processing
- Helicity information
= Not really needed (not provided at NLO)

O CMS request it (use post-processing
for NLO)

= Easy for post-processing

OM, mgongpu
dev meeting
22 Jun 2020
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3. Github Actions

o Actions file in .github/workflows/c-cpp.yml

o If you have C++-only job, can
hook yourself into that

o WIP: CUDA job on CERN
premises
o Already ran CUDA tests in

container

o Development done, waiting for
review:
PR#52

o Will apply same strategy to
epoch2/cuda

name: C/C++ CI
on:
pull request:
branches: [ master ]
jobs:
epochl eemumu:
runs-on: ubuntu-latest
defaults:
run:
working-directory:
epochl/cuda/ee_mumu/SubProcesses/P1 _Sigma sm_epem_ mupmum
steps:
- uses: actions/checkout@v2
- name: make gtest
working-directory: tools
run: make
- name: make

run: make

SH, mgongpu

dev meeting

30 Nov 2020 8

- name: make check

run: make check
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Simultaneous development for CUDA and C++

» Design principle: same source code for CUDA and C++
—Why? Large overlap from the start (CUDA derived from standalone C++)
—Why? Avoid divergence and the need to duplicate effort
—Why? Because some optimizations (e.g. AOSOA) may be good for both!
—How? Use #ifdef's — more than 90% of the code remains common

» Design principle: decouple floating-point data types from calculations
—Why? Allow switching from double to float (in both CUDA and C++)
—How? Typedef, default being “typedef double fptype;”

» Design principle: decouple data access from calculations
—Why? Allow using formally the same code in CUDA and C++
* Note: C++ is not vectorized yet here, data types are the same (scalar) in both
—Why? In the past, also allowed SOA/AOS and global/shared/local comparison
—How? Use references and constant references in compute engines

—How? Move data access to separate routines, build references from them
const fptype& plparip4levt( const fptype* momentaid, const int ipar, const int ip4, const int ievt )

C\_E/RW A. Valassi — Madgraph vectorisation MG4GPU development meeting — 14 Dec 2020
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AOSOA memory layouts for CUDA and C++

» Design principle: move from variable-size to fixed-size arrays
—Why? The cardinalities of all relevant data sets (#particles, #momenta...) are fixed!

—How: replace all std::vector<std::vector<xxx>> by C-style arrays xxx[J[]
* This alone gave a nice performance boost to both CUDA and C++ (IIRC...)

» Vague design intuition: achieve SOA or AOSOA memory layouts
—Why? It may help for coalesced memory access in CUDA (eventually it did)
—Why? It may help for SIMD vectorization in C++ (eventually it did)

—How? C-style arrays: e.g. SOA, “double momenta[4=xyzE][#particles][#events]”
* Note: this can also be cast from/to “double momental[]” i.e. “double* momenta”

—How? Many iterations, each with nevt events (=ndim=#threads*#blocks on GPU)
* All arrays are dimensioned to handle the nevt events in one iteration

—How? AOSOA eventually favored over SOA, split nevt into “pages”

* Hence nevt=npag*nepp (#¥pages * #events per page), yielding AOSOA[npag][...][nepp]

* More manageable than SOA[...][npag*nepp], better performance in CUDA

* Note: can always recover AOS[nevt][...][1] by setting npag=nevt and nepp=1

C\Eﬂw A. Valassi — Madgraph vectorisation MG4GPU development meeting — 14 Dec 2020
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SIMD vectorization (1) — event loops

* Design principle: make the event loop the innermost loop
-Why? Event-level data parallelism: the same calculations apply to all events

GPU SIMT/SPMD: yes
CPU SIMD: no

(master branch Aug-Dec 2020)

#ifndef __ CUDACC__
for (int ievt = 0; ievt < nevt; ++ievt) // CPU
#endif

{
#ifdef _ CUDACC__
// CUDA - using precomputed good helicities
for ( int ighel = 0; ighel < cNGoodHel[0]; ighel++ ) { ...
const int ihel = cGoodHel[fighel];
// GPU: const int ievt = blockDim.x * blockldx.x + threadldx.x;
calculate_wavefunctions( ihel, allmomenta, meHelSum/[0] ); ... } ...
#else
// C++ - compute good helicities within this loop.
for (int ihel = 0; ihel < ncomb; ihel++ ) { ...

#endif
}

—How? Some refactoring, e.g. move helicity loops outside the event loop
* Note: involves rethinking the interfaces of C++ methods ~analogous to CUDA kernels
—Hence the name of the branch “klas™: kernel launchers and SIMD vectorization
—Note: our CUDA implementation is also based on event-level data parallelism

» But in CUDA we already achieved event-level parallelism even without these changes
*» GPU SIMT/SPMD parallelism is simpler to achieve than CPU SIMD vectorization

GPU SIMT/SPMD: yes

(klas branch Nov-Dec 2020) | CPU SIMD: yes (eventually!)

// Both CUDA and C++, using precomputed good helicities
for ( int ighel = 0; ighel < cNGoodHel; ighel++ )
{
const int ihel = cGoodHellighel];
#ifdef _ CUDACC __
/f GPU: const int jevt = blockDim.x * blockldx.x + threadldx.x;
calculate_wavefunctions( ihel, allmomenta, allMEs );
#else
// CPU: loop on ievt=1..nevt using SIMD
calculate_wavefunctions( ihel, allmomenta, allMEs, nevt );
#endif

}

calculate_wavefunctions( ihel, allmomenta, meHelSum|[0], ievt); ...} ...

C\_E/RW A. Valassi — Madgraph vectorisation

X2

En passant: more consistent interfaces for CUDA and C++
Both code snippets are within a CUDA kernel for the GPU

MG4GPU development meeting — 14 Dec 2020
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SIMD vectorization (2) — interfaces and types

* Implementation choice: compiler vector extensions (CVE)
—Why? No external dependency (VC, VecCore...), simpler than intrinsics
* More predictable than auto-vectorization alone, but still very lightweight
—Why? Available for gcc, but also (with some limitations) for clang/OpenCL and icc
» My initial tests: may need intrinsics if we want to support clang, operator|] is not a ref
—How? Floating point vector fptype v (RRRR) is a CVE typedef of size neppV
“‘typedef fptype fptype_v __ afttribute___ ((vector_size (neppV*sizeof(fptype)))),” // RRRR
—How? Complex vector cxtype v (RRRRIII) is a class with two fptype v vectors
“class cxtype_V{ ...; private: fptype_v m_real, m_imag; }; // RRRRIIII
* Add boilerplate implementation for missing “cxtype[ v] operator cxtype v|fptype[ V]’
* No ambition to be complete: only add what is needed (as we do for cxtype's in CUDA)
—How? Refactor interfaces of C++ compute engines using vector types
* The nevt=npagV*neppV events are split in npagV pages with neppV events per page
* Explicit loop on npagV in the calling function, implicit loop on neppV in CVE vectors
* This is where most of the actual coding work was necessary

C\E/RW A. Valassi — Madgraph vectorisation MG4GPU development meeting — 14 Dec 2020
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SIMD vectorization (3) — formal language

Same code

(klas branch Nov-Dec 2020)

#ifdef __ CUDACC__
typedef iptype fptype_sv;
typedef cxtype cxtype _sv;
#else

typedef iptype_v fptype_sv;
typedef cxtype_v cxtype_sv;
#endif

L

{(klas branch Nov-Dec 2020) - vector CPU
- scalar CPU or GPU

__device__

void FFV1_0( const cxtype_sv F1S[], //input wavefunction1[6]
const cxtype_sv F2S[], // input wavefunction2[6]
const cxtype_sv VV3S[], / input wavefunction3[6]
const cxtype COUP,
cxtype_sv vertex[] ) / output
{..
const cxtype_sv& F1_2 = F1S[2]; ...
const cxtype_sv& F2_2 = F2S[2]; ...
const cxtype_sv& V3_2 = V3S[2]; ...
const cxtype_sv TMP4 =
(F1_2*(F2_4*(Vv3 2+V3 5)+
F2 5*(V3 3+cl*(V3 4)))+
(F1_3*(F2_4*(V3 3-¢cl*(V3 4))
+F2 5*(V3.2-V35))+
(F1_4*(F2_2*(Vv3 2-V3 5)
-F2 3*(V3 3+cl*(V3 4)))+
F1_5*(F2.2*(-V3 . 3+cl*(V3 4))
+F2 3* (V3 2+V35))))):
( *vertex) = COUP * (-cl) * TMP4; ...
return;

}

(:;_E/RW A. Valassi — Madgraph vectorisation

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

MG4GPU development meeting — 14 Dec 2020

 Design principle: decouple data access and data types from calculations
—Why? Allow using formally the same code in CUDA and scalar or vectorized C++
—How? Add another typedef which can be scalar or vector depending on context

v
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SIMD vectorization (4) — architectures

» Tested various combinations of compiler flags and architectures

—AVX2 gives almost a factor 4 speedup from SIMD vectorization!
* Close to maximum theoretical limit (vectors of 4 doubles)

—AVX512 is not faster (or is even a bit slower) than AVX2
* Not too surprising, there are known issues — may investigate more later if needed

« Support choice: focus on AVX2, support scalars, AVX512 and SSE
—Reminder: scalar=1, SSE=2, AVX2=4, AVX512=8 doubles per vector
—Why? AVX2 gets the highest gain (4x), keep AVX512 anyway for further tests

—Why? Most modern CPUs have AVX2, but some Grid nodes only have SSE
* | had initially discarded SSE, will add support for it as agreed
—How? Hardcode vector sizes depending on #ifdef’s for AVX2 and AVX512F

C\E/RW A. Valassi — Madgraph vectorisation MG4GPU development meeting — 14 Dec 2020 8

N

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 75/30



Tests on Cori — First success on AVX512/zmm

See https://github.com/madgraph5/madgraph4qgpu/pull/236
— Results from Friday evening — not yet merged

CORI at NERSC - Intel Xeon Gold 6148 CPUs plus V100 GPUs
— Temporary access during a training about CUDA Streams (thanks ATLAS!)

First demonstrated benefit of AVX512/zmm over AVX512/ymm
— For doubles: around 10%
— For floats: around 30%
— To be compared to a theoretical factor 2 maximum speedup

Things | have not tested
— perf was not available
— | forgot to compare with/without LTO/inlining (results above are no LTO, no inlining)

C\E/RW AV — WIP on Madgraph4GPU 20 Jul 2021
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Towards production: two development lines?

» Fastest: “standalone” C++ driver * For production: madevent Fortran driver
» Allows fastest prototyping » Keep the framework used by users

— minimal overhead, ~pure ME —and all complexities (NLO, pdf...)
» Complete minimal eemumu anyway * Two basic options

— unweighting, cross section — 1. Rewrite full madevent Fortran in

C++, keep the Python machinery
« MadEvent input/output?
- Complex, slow, unnecessary?
— 2. Inject only C++/CUDA ME
calculation into Fortran madevent
« Seems feasible and ~fast

« Small apple-to-apple replacement
(and timing comparison)

Freedom to redesign from scratch
—new sampling e.g. VegasFlow
— GPU specific e.g. PDFFlow

AV — WIP on Madgraph4GPU 22 Mar 2021 12
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Fortran: integration proposal details

» Analysis (so far) in https://github.com/madgraphS/madgraph4gpu/issues/121

« Two main problems:

— 1. Fortran matrix1 routine is not completely stateless: must clean up inputs/outputs
— 2. Fortran matrix1 operates on a single event: must rewrite the flow for many events

» Absolutely needed both for GPUs and for SIMD on CPUs

« Can proceed in two steps

— 1. Make Fortran stateless, inject single-event C (C++/CUDA), test cross-linkage with data

— 2. Split the Fortran event loop that calls matrix1 (via dsig)

Split here:

- for many events, call x_to_f arg (random +
sampling), store the corresponding momenta
- loop over the stored momenta, call dsig in
parallel for many events (must remove state
also from dsig, not only from matrix1...)

Allocate memory in advance, before that

/ if (pass_point(p)) then
L— x = Eval

C\E/RW AV — WIP on Madgraph4GPU

N L)

do while(iter .le. itmax)

call sample_get_config(wgt,iter,ipole)
f (iter itmax) then
eeeeee vent+1
call x_to_f_arg(ndim,ipole,mincfig,maxcfig,n

x = dsig(p,wgt,®) !Evaluate function

wgt = wgt*fx

if (wgt .ne. @de) call graph_point(p,wgt) !Update graphs

call sample_put_point(wgt,x(1),iter,ipole) !Store resu

if (wgt .ne. @d@) kevent=kevent+1l

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

invar,wgt,x,p)

22 Mar 2021 14
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Interfacing with Fortran (MadEvent): potential challenges

» Work just starting: inject our CUDA/C++ ME calculation into MadEvent
— Fastest way to bring this R&D work to production — discussed with experiments in HSF WG
— More than just MadEvent and Fortran: bash, Python, C++ and pdf, PS, NLO merging...
— Easier validation — leverage on established infrastructure, no change in user interface

* From a first look at MadEvent: two potential challenges (legacy code reengineering)
— (1) must create event baskets a posteriori (current code loops on individual events)
— (2) Fortran common blocks complicate separation of inputs and outputs (not pure functions)

FOR ieventin 1,...N: FOR ieventin 1,...N:
- draw random numbers - draw random numbers
- map to phase space point - map to phase space point
- apply kinematic cuts | > - apply kinematic cuts
- compute ME in Fortran - store to event basket
(extra input from common?)
(extra output to common?) FOR ieventin 1,...N (SIMT, SIMD):

- read from event basket
compute ME in CUDA/C++
(no extra input from common)
(no extra output to common)

vCHEP — 19 May 2021 21
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Old design

A

o~

A

dsample.f

auto_dsig.f

call x_to_f_arg(...)
-> X, p, wgt (local)

-> Xbk, g2fact, cm_rap (common)

SELPROC(...)=DSIGPROC(...)
-> Compute PDF only for all flavor
- Pick a given matrix-element
- Pick a symmetry channel
-> run the cuts (inside dsigproc)

fx = dsig(p,wgt,0)

-> |ot is hidden here!

-> cuts

-> matrix-element choice
-> symmetry handling

-> scale choice

Reset clustering flag

call sample_put_point()

-> add grid running information
-> decide to pass to next iteration
-> update the grid

DSIG=DSIGPROC()
-> [e-run cuts
-> Update model
-> compute matrix-element
-> compute the pdf
-> in principle cached

OM, mgongpu
dev meeting
7 Jun 2021
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New design

dsample.f

call x_to_f arg(...)
-> X, p, wgt (local)
-> Xbk, g2fact, cm_rap (common)

Check Cuts

PDF to prepare flavor picking

v

prepare_grouping_choice (one PS)
select_grouping (packed)

— dsig_vec (packed: auto_dsig.f)
L update_scale_coupling (packed)

A\ 4

Select one matrix element

» See next slide

—» See next slide
call sample_put_point()

-> add grid running information OM. maonaby
-> update the grid OIS

dev meeting
7 Jun 2021
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—dit metadata __init__.py

File Edit Options Buffers Tools Python Help

Key: name of output

":output.CUDAExporter}

value: class to use

OM, mgongpu
codegen workshop
16 Sep 2021

'''''''
............
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Stateful interface for Fortran bridge?

» See the discussion in https://github.com/madgraph5/madgraph4gpu/issues/329

 First point (easy): need the same Bridge instance across several ME computations
— compute good helicities only once
— more generally, provide a single constructor/initialization (e.g. also for Kokkos etc)

« Second point (we should agree): static Bridge singleton vs. allow several Bridges

— OPTION 1 (a la SR): Bridge address invisible from Fortran (use static Bridge singleton)
* No explicit Bridge constructor call from Fortran (construct C++ Bridge on first ME calculation)
» Assumes Fortran will not use multi-threading (but C++ Bridge can internally be MT)
» Fewer Fortran calls to C (but we must ensure Fortran/C interface match for other methods anyway)
* No explicit destructor, relies on static going out of scope at the end of the program
— OPTION 2 (a la AV): Bridge address visible from Fortran (several Bridges possible)
« Explicit Bridge constructor and destructor from Fortran (memory address is Fortran INTEGER*8)
» Two more Fortran calls to C (two more methods needing checks of Fortran/C interface match)
— What'’s your preference? (Olivier, especially what’s your preference?)
—In both cases: | suggest adding a Fortran INTERFACE block to expose the C interface

@ AV — Madgraph4GPU WIP (pptt, bridge, split kernels, compilers etc) 24 Jan 2022
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Code generation backport — completed for cudacpp!

» Track overall progress on https://github.com/madgraphS/madgraph4gpu/issues/244
— From epoch1, epoch2... to a single evolving epochX
— Include code generation plugin, auto code, manual code, throughput logs
— See htitps://github.com/madgraphS/madgraph4gpu/tree/master/epochX/cudacpp

» Various steps for Cuda/C++ plugin — NB: epochX is the current latest cuda/c++ code!
— 1. Basic infrastructure [DONE] — PR #245
— 2. Backport “epoch2 ggttgg” [DONE] — PR #247, PR #254, PR #256
» Tagged as “golden_epochX2” — for Kokkos/Alpaka/Sycl comparison, Fortran/Cuda bridging...
— 3. Backport “epoch1 eemumu” (vectorization) [new: DONE] — PR #253
— 4. Generate vectorized ggttgg in epochX [new: DONE] — PR #267, PR #270
» Tagged as “golden_epochX4” — for Kokkos/Alpaka/Sycl comparison, Fortran/Cuda bridging...
» Some preliminary results on the next slide

— 5+. Ongoing/planned: cleanup, develop, iterate... (but this is beyond the backport!)
* Cleaned up several old tickets, tried to document important issues

» Ongoing work on tests for ggtt/ggttgg with StephanH
» Planned: documentation for epochX (code generation, performance/functional tests)
» Available to help on Alpaka/Kokkos/... backport if needed

* A few other pending developments, some in epoch1 (e.g. neppM vs neppR)

C\E?’W AV — WIP on Madgraph4GPU 25 Oct 2021
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Class architecture — 3+ types of classes

* (1) Memory buffers
— Allocate unstructured memory (e.g. double*) for a given number of events
— Different classes for host/pinnedhost/device memory and for momenta, MEs etc.

* (2) Memory access
— Define the internal substructure of memory buffers (e.g. AOSOA for momenta)
— Define how CUDA/C++ kernels locate event records and fields in memory buffers
— Different classes for host and device memory access and for momenta, MEs etc.

* (3) Kernel launchers
— Constructors from references to existing input and output memory buffers

— Computational functions with C++ interface, encapsulating C++ or CUDA kernels
+ Internally use low level Rambo/HelAmps functions for specific memory access template parameter

— Different classes for host and device kernel processing and for Rambo, ME calculation etc.

» Applications (check sa, runTest, Bridge) are built in terms of these 3 “LEGO bricks”
— Eventually: sequence classes for some of these sequences?

@ AV — Madgraph4GPU PRs (class structure, standalone Bridge tests etc) 10 Jan 2022
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Recap of missing pieces (in Bridge and implementation)

» My current Bridge: input momenta — output MEs, per event (arrays)
— Overview (not updated) in https://github.com/madgraphd/madgraph4gpu/issues/404

Multichannel: must add input diagram ID (scalar)

— MadEvent single-diagram enhancement: output ME multiplied by amp(ID)/sum_amp
» Done by Olivier in standalone_gpu, | must integrate it in madevent + cudacpp

— NB can ignore “get_channel_cut’ https://github.com/madgraph5/madgraph4gpu/issues/419

Running of alphas: must add input alphas, per event (array)
— https://github.com/madgraph5/madgraph4gpu/issues/373
— The QCD running coupling constant alpha_strong is different in each event

— What we chose (for now?): Fortran chooses the scale and passes it to cudacpp
* Done by Stefan in standalone_cudacpp, | must integrate it in madevent + cudacpp

Random color choice: must add input random and output color, per event (array)
— https://github.com/madgraph5/madgraph4gpu/issues/402
— To be implemented in cudacpp: random picking of color

Random helicity choice: must add input random and output helicity, per event (array)
— https://github.com/madgraphS/madgraph4gpu/issues/403
— To be implemented in cudacpp: random picking of helicity

For xsec: multichannel, alphas. Only for unweighted events: random color, helicity.

C\E/RW AV — Madgraph4GPU WIP (madevent + cudacpp integration) 04 Apr 2022
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Matrix element integration in MadEvent: results

 Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
—Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)

—Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

» Performance results = Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)

—The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)

—Amdahl’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

CERN: Intel Silver 4216 + Nvidia V100

AVX512 on Intel Silver: x4.4 speedup for MEs, x3.9 for full workflow
AVX512 on Intel Gold: x7.8 speedup for MEs, x6.4 for full workflow

gg — ttggg [seconds] Overall = MadEvent + MEs
FORTRAHN 93,65 = 4.16 _+ 89

CPP/none |111.50 = 4.89 + 106.62

CPP/ssed bZ2.1b = A.50 + 57.66

6k events cppsavx2 33.78 = 4.26 + 29.52

CPP/ 512y N _66 = A 29 4+ 926 44

CPP/ 512z 28.36 = 4.34 + 24.02

CUDA/ 32 b3.712 = 5.34 + Kh8.386

800k events CUDA/8192 639.20 = 527.37 + 111.83

[MEs/second]

.19e+01
.03e+01
J12e+02
. Ida+02
.43e+02
. be+02
. 10e+02

.40e+03

-]k D B D e O ]

Software performance and portability in Madgraphb_aMC@NLO

Juwels: Intel Gold 6148

[seconds] Overall = MadEvent + MEs  [MEs/second]
FORTRAN _68.93 = 2.84 + 66,09 | 9.73e+01
CPP/none| 84.01 = 3.38 + B80.63|] 7.98e+01
CPP/ssed Jb.29 = 3.00 ¥ 43.75 | 1.49e+02
CPP/avx2 22.26 = 2.85 + 19.41 | 3.31le+02
CPP/512y 20,49 = 2.89 + 17.60 | 3.66e+02
CPP/512z) 13.11 = 2.81 + 10.30)] 6.24e+02

ICHEP, Bologna, 8 July 2022
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See hitps://github.com/madgraph5/madgraph4gpu/raw/c2d22aebd45348e56a0477f0c85bab3d8eab18ab/epochX/cudacpp/CODEGEN/PLUGIN/CUDACPP_SA_OUTPUT/madgraph/iolibs/template_filessCOPYRIGHT

Copyright (C) 2020-2023 CERN and UCLouvain.
Licensed under the GNU Lesser General Public License (version 3 or later).
All rights not expressly granted are reserved.

The copyright and license notice above cover the CUDACPP code-generating plugin
of the MadGraphS_aMC@NLO (in the following "MG5aMC") software, and all ccde
generated using that plugin. These are ccllectively referred tc as "this work”
or "the MG5aMC CUDACPP plugin and the code that it generates™, or more simply
as "the MG5aMC CUDACPP plugin", in the fellowing and throughout this work.

The MG5aMC CUDACPP plugin and the code that it generates are based on the
initial work on porting MG5aMC to GPUs using CUDA and on speeding up MG5aMC on
CPUs using vectorized C++ by three original authors from CERN and UCLouvain.
The full development team currently includes the following authors

Stephan Hageboeck (CERN)

Cclivier Mattelaer (Universite Catholique de Louvain, original author)

Stefan Roiser (CERN, original author)

Andrea Valassi (CERN, original author)

Zenny Wettersten (CERN)
See https://github.com/madgraph5/madgraphd4gpu for more details. For the full
list of authors and collaborators of this work, see the file "AUTHORS" in the
same directory as this "COPYRIGHT" file in the source code of the plugin.

The MG5aMC CUDACPP plugin and the code that it generates are derived from, and
are intended to be used in combination with, the MG5aMC software and the code
that it generates. The M is dev ped by the MadGraphb aMCENLO
dTeam", who are the

The MG5aMC CUDACPP plugin and the code that it generates are free software;
you can redistribute them and/or modify them under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation, either
version 3 or (at your option) any later version.

This work is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

The GNU Lesser General Public License (LGPL) version 3 is copied verbatim in
the file "COPYING.LESSER" in the same directory as this "COPYRIGHT" file. It is
also available at <https://www.gnu.org/licenses/lgpl-3.0.txt>.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of wversion 3 of the GNU General Public License (GPL), which is
copied verbatim in the file "COPYING" in the same directory as this "COPYRIGHT"
file and is also available at <https://www.gnu.org/licenses/gpl-3.0.txt>.

In line with the license above, the authors emphasise the following points. For
the developers' and authors' protection, the GPL clearly explains that there is
no warranty for this free software. For both users' and authors' sake, the GPL
requires that modified versicns be marked as changed, so that their problems
will not be attributed errcneously to authors of previous versions.

AV — cudacpp licensing

Proposed
COPYRIGHT file

This would be distributed with the
code-generating plugin, and also in
generated code

25 April 2023
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A tale of two repositories (now)

mg5amcnlo madgraph4gpu
https://github.com/mg5amcnlo/mgSamcnlo https://github.com/madgraph5/madgraph4gpu

» the MG5AMC repo (previously launchpad) » cudacpp plugin (cuda/c++ codegen)

* python framework, fortran codegen » generated code, tests, results (+legacy stuff)
* permissive NCSA-style license « more restrictive LGPL license

A specific commit is in madgraph4gpu — Includes mg5amcnlo as a git submodule

Important branches for GPU/SIMD work: Important branches for GPU/SIMD work:
* gpucpp (the baseline: merge herel) « master (the baseline: merge here!)

* gpucpp_june24 (channelid array) mercep * master_june24 (...) MERGED

* gpucpp_goodhel (new helicity filter) wie  + master_goodhel (...) wip

* gpucpp_for360 (complete 3.6.0 sync) wir * master for360 (...) wip

Status: finally merged "june24" this week; now fixing the conflicts with "goodhel" and "for360"
Aim for a v3.6.0 release including the GPU/SIMD support... possibly by end September!?

1@ A. Valassi — status of MG5AMC (LO) on GPU and SIMD 6 September 2024  3/8
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Still a tale of two repositories (later)?

Option 1 — our assumption so far

mg5amcnlo mg5amcnlo_cudacpp (OLD WIP AUG 2023)
https://qithub.com/mgsamcnlo/mgsamchlo https://github.com/mg5amcnlo/mgsamcnlo cudacpp
» the MGSAMC repo (NCSA-style) » cudacpp plugin (LGPL)

Includes cudacpp as a git submodule «——— A specific commit is in mgSamcnlo
in PLUGIN/CUDACPP_OUTPUT

Option 2?7 — recent discussion AV/OM

mgS5amcnlo https:/github.com/mg5amcnlo/mg5amcnlo
Includes cudacpp as a subdirectory in PLUGIN/CUDACPP_OUTPUT

Advantages/Disadvantages?
- Option 1 gives cleaner separation; but merge conflicts with git submodules are hard
- Option 2 is easier to manage, but more monolithic; following up if licensing is ok

Vs
@ A. Valassi — status of MG5AMC (LO) on GPU and SIMD 6 September 2024 4/8
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Packaging — two-weeks-agoe now

Next priority: packaging (3)

* | am not entirely sure which option | prefer — | ask here before doing real work...
- Optlon 1 glves cleaner separation; but merge conﬂlcts WIth git submodules are hard

— (Option 3 keep madgraph4gpu and restructure it? probably better not...)

Very useful discussion
at the meeting 17 Sep
(and later with OM)

And the answer is...
~ Option 3!
_l

* | have a slight preference for Option 2 however (i.e. a single repo)
— a specific version of cudacpp needs a ~specific version of mgSamcnlo
—-a specnf c verS|on of mgSamcnIo needs a ~specuﬁc verS|on of cudacpp

.-

, Keep mg5amcnlo as a git

, Download cudacpp as a

submodule in cudacpp

tarball into mg5amcnlo

N
32

A. Valassi - status of PRs, CMS DY+jets, etc. 17 September 2024

A. Valassi — cudacpp packaging etc.

@ A. Valassi — Madgraph on GPUs and vector CPUs: towards production

May keep madgraph4gpu
~as-is for the moment
(and clean it later)

Issues and PRs remain

Commit history remains

01 October 2024
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