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The collaborating teams (summer 2024)

• Focus of this CHEP2024 talk: first release of the CUDACPP plugin

– will give only minimal details about the parallel work on the SYCL plugin

– will show work done for CMS – but see Jin’s poster for details on the work in CMS!
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Jorgen Teig* (2023)

Filip Optolowicz (2023)
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*CUDACPP plugin AUTHORS

CUDACPP plugin core development (NVidia and AMD GPUs, vectorized C++ on CPUs)

Taylor Childers

Nathan Nichols

(ANL)

SYCL plugin (also Intel GPUs)

WIP: integration into CUDACPP

Jin Choi

(Seoul National University)

Saptaparna Bhattacharya

(Wayne State University)

Robert Schoefbeck

(HEPHY Vienna)

CMS integration tests

See Jin’s poster for details!
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Motivation and overview



A. Valassi – Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 4/30

MC EVENT GENERATION (MC DATA)

Simulate physics process in beam collisions

Output: particles produced in beam collision

MC SIMULATION + DIGITIZATION (MC DATA)

Simulate interaction of collision products with detector

Output: simulated electronic signals  

RECONSTRUCTION (MC DATA)

Translate electronic signals to

particles passing through the detector

RECONSTRUCTION (REAL DATA)

Translate electronic signals to

particles passing through the detector

ANALYSIS

Compare real data and MC data with statistical methods – measure parameters, search for new processes 

SIMULATED DATA PROCESSING

(“MONTE CARLO”)

REAL DATA PROCESSING

Event generators: the first step in the HEP simulation chain

Theoretical physics (Feynman diagrams)

Monte Carlo methods (random numbers)
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Event generators (1): why accelerate them?

CERN-LHCC-2022-005

Around 10-20 % of LHC computing CPU costs 

(hence: important to speed them up!)

See also 

Olivier Mattelaer's 

plenary talk 

on Thursday 

https://cds.cern.ch/record/2802918
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Sequential processing vs. Data-parallel processing

Ars Technica (March 2000)

Sequential processing

Single Instruction Single Data:

1 input and 1 output per cycle

for a given instruction

Data-parallel processing

(lockstep processing)

Single Instruction Multiple Data:

N inputs and N outputs per cycle

for the same instruction

Two hardware implementations

of essentially the same concept:

GPUs – “SIMT”

~Easier to code (CUDA)

SOAs not strictly needed

Tolerate lockstep <100%

Vector CPUs – SIMD

More difficult to code (C++)

SOAs strictly needed

Need strict 100% lockstep

Note: task parallelism (multi-threading, multi-processing) 

differs from data parallelism: it exploits a different dimension 

of hardware parallelism (many CPU cores, many nodes...)

In our work on MG5AMC “CUDACPP” we have targeted 

data parallelism on both vector CPUs and GPUs

from the very beginning!

https://arstechnica.com/features/2000/03/simd/
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Event generators (2): why CPU vectorization and GPUs?

• Vector CPUs and GPUs are widely available to HEP now...

– All of the CPUs in our computing Grid have SIMD (most have at least AVX2)

– GPUs are becoming more and more available to us especially at HPC centers

• ... but they are generally very difficult to exploit in most HEP software 

– Example: Monte Carlo detector simulation has a lot of stochastic branching (makes lockstep processing difficult)

• However: matrix element event generators are ideal software workflows for SIMD and GPUs!

– Monte Carlo sampling of many data points → Data parallelism with near-perfect lockstep processing!

SAME CALCULATION ON DIFFERENT DATA!

(No if-then-else blocks, i.e. no branching)

INPUT

OUTPUT

Lockstep processing
Good for GPUs (SIMT) 

and vector CPUs (SIMD)

See also 

Andrea Sciabà's 

plenary talk 

on Thursday 
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What is a MC ME generator? A simplified computational anatomy

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MONTE CARLO 
INTEGRATION

MONTE CARLO 
UNWEIGHTING

UNWEIGHTED EVENTS 
{EVT_i , W_i=1}

WEIGHTED EVENTS 
{EVT_i , W_i}

CROSS-SECTIONS etc...
(AVG W_i, MAX W_i)

PHASE SPACE
SAMPLING 

OPTIMISATION

MC MATRIX 
ELEMENT 

GENERATOR 
(e.g. MG5aMC)

+ optional event cuts

HADRONISATION
AND DECAY

PARTON 
SHOWERS

PARTICLE 
FILTERING

DETECTOR 
SIMULATION

SHOWERING AND 
HADRONIZATION 

GENERATORS
(e.g. PYTHIA)

(GEANT4)

For each event:

1. RANDOM NUMBERS

Output: random numbers

2. PHASE SPACE SAMPLING

Input: random numbers

Output: particle 4-momenta

3. ME CALCULATION 

Input: particle 4-momenta

Output: Matrix Element (ME)

CPU BOTTLENECK

(NB: “Matrix Element” is an 

element of the scattering matrix... 

not a linear algebra concept!)

Monte Carlo sampling: randomly generate and process

MANY different events (“phase space points”)

(FOR LATER!) Physics output: cross-section and LHE event file
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CUDACPP: speed up 

the ME calculation 

using GPUs and SIMD
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Matrix 

Elements:

8%

Matrix 

Elements:

97%

Daniele Massaro – ESC2024

In a nutshell: we speed up the 

“matrix element” (ME) calculation

• In the old Fortran implementation, the 

ME calculation was the bottleneck

• Using GPUs/SIMD we speed up MEs 

so much that previously unimportant 

components become the bottleneck!

– Phase space sampling, pdf’s, ... 

– As predicted by Amdahl’s law (later...)
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Architecture overview
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MG5AMC: from single-event to multi-event APIs
OLD madevent 

APPLICATION

SINGLE-EVENT MEs

(< 2020 or < MG 3.6.0)

1. STANDALONE

(TOY) APPLICATION

MULTI-EVENT MEs

(2020-2021)

2. NEW madevent

APPLICATION

MULTI-EVENT MEs

(2022)

First we developed 

the new ME engines in 

standalone applications

MATRIX ELEMENT: 

CPU BOTTLENECK 

IN OLD madevent

Then we modified the existing 

all-Fortran madevent application

to use multi-event APIs, 

and we injected CUDACPP MEs 

into it (to replace Fortran MEs)

SCALAR: NEW 

BOTTLENECK

(Amdahl’s law)

PARALLEL:

MUCH FASTER!
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• (1) Design computational units using re-entrant functions with well-defined inputs and outputs!

– Beware of hidden inputs and outputs from common blocks and static data...

• (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!

– Well-defined input array of many events, well-defined output array of many events

If you design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

Do's and dont's - two simple lessons learnt for any MC generator

PROCESS ONE EVENT1 IN 1 OUT

PROCESS N EVENTSN IN N OUT

REENTRANT FUNCTION
(NO STATE! THREAD SAFE!)

IN OUT

STATEFUL FUNCTION

"IN" ? "OUT" ?

/COMMON/... /COMMON/...

static ... static ...

An additional technicality: prefer Structure-of-Array 

(SOA) memory layouts for the inputs and outputs!

[Strictly needed only internally for SIMD and useful for 

GPUs, but good to have also in the API of the function]

IMO, within MG5AMC this remains an important issue 

that complicates the porting to GPU/SIMD 

of non-ME components like phase space sampling...
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From single-event to multi-event APIs: some specific examples

• 1. MG5AMC at LO: the work described in this talk!

– This was the work necessary on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

• 2. MG5AMC at NLO: the ongoing work described in the next talk by Zenny!

– The general idea (and possibly the interface of the CUDACPP “bridge”) remains the same at NLO as at LO

• 3. POWHEG + MG5AMC: the work we plan to collaborate with!

– This is the work the POWHEG team would need to do on their framework (to interface to the MG5AMC CUDACPP “bridge”)

PROCESS ONE EVENT1 IN 1 OUT

PROCESS N EVENTSN IN N OUT
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2. ONE madevent

APPLICATION

(2022)

1. ONE STANDALONE

TOY APPLICATION

(2020-2021)

PYTHON/ BASH orchestration

3. MANY madevent

APPLICATIONs

./bin/generate_events

(2023)

PYTHON/ BASH orchestration

PYTHON/ BASH code generation (from the CUDACPP plugin)

4. FULL WORKFLOW

./bin/mg5_aMC
install cudacpp; 

generate...; output...; launch

(2024)

MG5AMC: CUDA/C++, Fortran, bash, python... 
Initially (2020-2022) we focused on individual applications

In the last two years (2023-2024) we focused more and 

more on the full workflow orchestrating many applications

- testing/optimizing the sharing of work in many processes

- integrating the full user workflow including installation
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Test driven development

• I personally think that writing tests is as important as (more important than?) writing implementation code!

• At each stage of development we have been adding new tests – and we still run them (manually and/or in the CI)

– One standalone application: use hardcoded random seeds, compare momenta and MEs to reference files (googletest)

– One madevent application: use same random seeds, compare cross sections and LHE files for Fortran/C++/CUDA MEs

• Require ~bit-by-bit equal results (within numerical precision), this is much more than statistical comparisons! 

• This test has been essential for identifying and later fixing a large number of important bugs 

– New (2024): the two tests above are now in the CI for many physics processes, including automatic code generation in the CI 

– Under development: full workflow with many madevent applications, compare overall cross sections and LHE files as above

Test a large phase space of development environments!

- Different physics processes

- Different vectorization scenarios

- Different floating point precisions

- Different compilers and O/S

- ... 

Ideally, we will try to port all these ad-hoc manual tests to the CI
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Some results and new developments
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A few examples on the following slides:

- gg→t ҧtggg: Fortran MEs ~ 99.5% => max speedup is x200

- gg→t ҧtgg: Fortran MEs ~ 95%    => max speedup is x20

- Drell-Yan+3j: Fortran MEs ~ 66%    => max speedup is x3

Amdahl’s law – not a theoretical possibility, we see it all the time! 

• The matrix element (ME) calculation was the bottleneck >95% for many processes in Fortran Madgraph

– But non-ME part <5% HAS become the bottleneck after we managed to accelerate MEs by factors O(10-1000)!

• Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)

– If the non-ME part takes 5%, the maximum speedup is limited to x20 even when the ME speedup is infinite!
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"Complex" physics process

MEs remain the bottleneck

Useful to further speedup the MEs

"Simple" physics process

MEs are no longer the bottleneck

Need to speed up the non-ME part

https://en.wikipedia.org/wiki/Amdahl%27s_law
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Results for gg→t ҧtggg from CUDA on NVidia V100 GPUs

gg→t ҧtggg
(subprocess of pp→t ҧt+3jets)

1240 Feynman diagrams

120x120 color matrix

ME speedup x90 (double) and x180 (float) 

with GPU MEs over scalar Fortran 
Overall speedup x60 (double) and x90 (float) 

with GPU MEs over scalar Fortran

This is a "complex" physics process

Even after GPU acceleration, MEs remain the bottleneck (11s out of 17s in double precision)

Trying to further optimise the ME calculation is still useful to obtain further overall speedups

Example: increase the GPU grid size (requires work on Fortran too), smaller kernels, etc...

Results refer to

a single CPU core

Amdahl's law: Overall speedup < ME speedup
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Results for gg→t ҧtggg from vectorized C++ on Intel Gold CPUs

512y = AVX512, ymm registers

512z = AVX512, zmm registers

The latter is only better on 

nodes with 2 FMA units

(here an Intel Gold 6326)

Intel Xeon Gold 6326

(2 FMA units for AVX512)

Results refer to

a single CPU core

Overall speedup x7 (double) and x14 (float) 

with GPU MEs over scalar Fortran

ME speedup x8 (double) and x15 (float) 

with AVX512 MEs over scalar Fortran

Our ME engine reaches the 

maximum theoretical SIMD speedup!

This is because we have perfect lockstep

during most of the ME calculation! 

Amdahl's law: Overall speedup < ME speedup
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https://ark.intel.com/content/www/us/en/ark/products/215274/intel-xeon-gold-6326-processor-24m-cache-2-90-ghz.html
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Floating point precision → constraints on GPU hardware

• Previous slides: if we could use floats instead of doubles, our MEs would be a factor 2x faster!
– Our vectorized C++ is 2x faster on CPU (e.g. AVX512: a 512-bit register holds 16 floats but only 8 doubles)

– Our CUDA is 2x faster on V100's (on NVidia data-centre GPUs, the FP64 FLOPs are x1/2 the FP64 FLOPs) 

• But we need double precision for Feynman diagrams (single precision gives numerical instabilities)
– This means that we cannot use consumer-grade GPUs (on T4's, the FP64 FLOPs are x1/32 the FP32 FLOPs)

– Also: GPUs for AI like Blackwell GB200 do have (a lot of!) FP64, but what you pay are FP4 tensor core FLOPs!
• (En passant: in CUDACPP we do NOT use tensor cores at all – these require a different software API than CUDA cores)

• We did switch to floats where possible – “mixed-precision”: double for Feynman, float for color matrix
– This is the default in CUDAPP v1.00.00 (even if the speedup over double is limited and still to be improved)

– We also had a closer look at the source of numerical instabilities with the CADNA tool

Stephan Hageboeck Filip Optolowicz
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Beyond NVidia GPUs

• The CUDACPP plugin uses a single source-code approach for 

CPUs (C++) and NVidia GPUs (CUDA), based on #ifdef’s
– The few CUDA calls are encapsulated by design in GPU classes

– We do not use any vendor-specific features (e.g. Streams) yet

• CUDACPP v1.00.00 includes support for AMD GPUs 

through HIP, using the same #ifdef approach
– This was inspired by the LHCb approach to GPUs

– NVidia and AMD provide ~80% of the GPU power in top500 HPCs

• Our Argonne colleagues are working on extending this to Intel 

GPUs via SYCL (based on their earlier work on a SYCL plugin)

Joergen Teig, AV

CUDA

HIP

https://www.nextplatform.com 

(13 May 2024)

GPU Teraflops by GPU family 

(HPCs in June 2024 Top500)

- NVidia GPUs 50.3%

- AMD GPUs 27.5%

- Intel GPUs 22.0%  

https://www.nextplatform.com/2024/05/13/top500-supers-this-is-peak-nvidia-for-accelerated-supercomputers/
https://www.nextplatform.com/2024/05/13/top500-supers-this-is-peak-nvidia-for-accelerated-supercomputers/


A. Valassi – Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 22/30

Beyond NVidia GPUs: results with AMD GPUs at LUMI

We kindly acknowledge the use of LUMI HPC resources under project 465001114 

(“CERN / HEPiX Benchmarking GPU WP” EHPC-BEN-2024B04-053) to produce these results

gg→t ҧtgg
(subprocess of pp→t ҧt+2jets)

123 Feynman diagrams

24x24 color matrix

Overall speedups for gg→t ҧtgg
- x9.3 for MEs on an AMD Instinct MI200 GPU

- x3.2 for MEs on an AMD 7A53 CPU with AVX2

(Amdahl: maximum overall speedup is x20)

One limitation: was unable to build HIP code for 

the more complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 process...
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Beyond Standard Model physics in MG5aMC CUDACPP

• CUDACPP v1.00.00 includes support for several BSM processes (at LO): SUSY, HEFT, SMEFT

• Motivation: speed up large productions of BSM processes at LO (for many SM processes NLO is required) 

– Need event samples exploring a large parameter space (by event generation or by event reweighting)

• Technical challenge (with respect to SM): non-standard parameters and couplings

– debugged/fixed non-standard code to propagate the running of the QCD coupling s to these BSM parameters and couplings

– (reminder: for each event, s scale is computed in Fortran and passed to cuda/c++ that computes s-dependent parameters)

SUSY (MSSM_SLHA2)

gg→ t1ഥt1



A. Valassi – Madgraph on GPUs and vector CPUs: towards production CHEP2024, Krakow, 23 Oct 2024 24/30

Studies with CMS: understanding Drell-Yan+3jets speedups (1)

• CMS have been the first early adopters of CUDACPP – an extremely useful, mutually beneficial, collaboration!

– See the details of all the studies performed by/within CMS in Jin Choi’s poster

• One of many issues we discussed with CMS: what is the speedup we can achieve from cudacpp in DY+jets?

gതu→𝜏+𝜏−ggതu
(subprocess of DY+3j)

100 Feynman diagrams

6x6 color matrix
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For one typical subprocess of DY+3jets:

Fortran MEs ~ 67% of the total time

=> Max overall speedup is x3 (Amdahl)

Achieved speedups (mixed FP precision):

- x3.0 on GPU (NVidia V100)

- x2.2 on SIMD ("512y" on Intel Silver)

NVidia V100 GPU

Intel Xeon Silver 4216

(1 FMA unit for AVX512)

https://ark.intel.com/content/www/us/en/ark/products/193394/intel-xeon-silver-4216-processor-22m-cache-2-10-ghz.html
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Studies with CMS: understanding Drell-Yan+3jets speedups (2)

• Non-ME is 33% of overall Fortran time (max speedup x3): what exactly takes time? => Profiling!

– The answer is: Fortran phase space sampling is now the bottleneck for DY+3j (93s out of 177s overall with C++ MEs)

• Profiling above is via code instrumentation (complementary to perf/flamegraph sampling profiling)
– Inserted low-overhead rdtsc counters in madevent internal fortran calls (still being tuned!)

– Keep, parse, aggregate all madevent logs from many processes in the python/bash orchestrator

– Not yet merged in mg5amcnlo or cudacpp but might be added in upcoming versions

FORTRAN

C++

AVX512

Overall:

- Fortran 447s

- C++ 177s (speedup x2.5)

Matrix elements:

- Fortran 307s

- C++ 36s (speedup x8)

Non-ME (overall - ME):

- (Same for Fortran/C++)

- Total non-ME 140s

- Phase space sampling 93s

AV – preliminary!
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Reweighting

• Two advantages: lower costs (no detector simulation), fewer statistical fluctuations
– Interest in CMS for EFT studies (exploration of large space of model parameters)

• In practice for MG5AMC: read in LHE file, add weights, write back modified LHE file
– Reweighting using the new ME engine in CUDA/C++ provides O(x10) speedups!

– Zenny's "tREX" is essentially ~ready to be included in an upcoming CUDACPP v1.01

One further possible application: weight derivatives in parameter measurements
– My suggestion: save weight derivatives (w.r.t measured parameter) in LHE files

– Use them to compute ideal measurement error or for weight derivative regression
– See https://doi.org/10.1051/epjconf/202024506038 and https://zenodo.org/records/11120823

Old technique, renewed interest!

1. Generate signal sample at ref, with wi(ref)=1
(By definition, background does not depend on )

2. Full detector simulation
(MC truth event properties xi

(true) → observed event properties xi) 

3. Reweight each event by matrix element ratio

Zenny Wettersten

https://doi.org/10.1051/epjconf/202024506038
https://zenodo.org/records/11120823
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A tale of two repositories

madgraph4gpu (will be moved and renamed!)

https://github.com/madgraph5/madgraph4gpu

• the CUDACPP plugin (cuda/c++ codegen) 

• (legacy stuff – code, logs... – to be removed)

• more restrictive LGPL license

(Developers download this repository)

Release tags are packaged as tarballs

(Developers find mg5amcnlo as a git submodule)

mg5amcnlo

https://github.com/mg5amcnlo/mg5amcnlo

• the MG5AMC repo (previously launchpad)

• python framework, fortran codegen

• permissive NCSA-style license

Users download this repository

Users install cudacpp as a tarball

(A specific commit is in madgraph4gpu)

Our work of the last 5 years 

is mainly here! 

• For more details:

– Our wiki: https://github.com/madgraph5/madgraph4gpu/wiki/Working-with-cudacpp-v1.00.00-(October-2024)

– Our bi-weekly development meetings: https://indico.cern.ch/category/12586

https://github.com/madgraph5/madgraph4gpu
https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu/wiki/Working-with-cudacpp-v1.00.00-(October-2024)
https://indico.cern.ch/category/12586
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2025?
20242023202220212020

20192018

The long journey to the v1.00.00 CUDACPP release – some steps

Code 

generation 

(Oct 2021) 
AV/OM

Inject CUDA/C++

into Fortran 

(2021-2022)
AV/OM/SRAOSOA, SIMD vectorization (Dec 2020) AV

Inception:

HSF Workshop (Nov 2018),

HSF paper (2019-2020),

LHCC review (2020-2021)

Running couplings 

(Apr 2022) OM/SR/AV

First commit! (Feb 2020) SR

Set up a github CI (Jan 2021) SH

NVidia / AMD 

GPU abstraction

(2023-2024) JT/AV

Test x-sections and LHE files Fortran vs Cudacpp (2022-2024) AV

BSM (2024) AV

Memory buffers

Memory access

Kernel launchers

(Jan 2022) AV

Tarball install. Release tag! 

(Oct 2024) AV/OM
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Conclusions

• The first release of the MG5AMC CUDACPP plugin for LO processes has been delivered!

• We speed up the matrix element (ME) calculation via data parallelism with excellent lockstep processing
– On NVidia and AMD GPUs in the order of x100 to x1000 

– On vector CPUs we achieve the theoretical speedup limit of x8 for AVX512 SIMD in double precision

• We achieved overall speedups between x3 and x70 (for DY+3j and gg→t ҧtggg) depending on the physics process
– For many processes (like DY+3j) we speed up the ME so much that the bottleneck is the non-ME component

• Many opportunities for further speedups, especially in the non-ME components (phase space sampling, PDFs...)
– WIP to profile the largest residual bottlenecks and to identify speedup strategies (with/without data parallelism) 

• We need double precision (FP64) in the majority of floating-point operations
– Using single precision (FP32) would allow a further speedup of MEs by a factor ~x2 but leads to numerical instabilities

– WARNING: in the latest GPUs targeting AI like NVidia Blackwell, what you pay for is mainly FP4/FP8/FP16 instead! 

• Mutually beneficial collaboration with CMS to test our software in production-like environments
– See the details in the poster by Jin Choi on Thursday

• The techniques and software used in the LO release were designed with NLO in mind and most can be reused! 
– See the details in the next talk by Zenny Wettersten

– More generally, two lessons learnt for any MC: use reentrant functions with well-defined inputs/outputs, use multi-event APIs
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Thanks Krakow!

Thanks to the organizers of this conference

Thanks Staszek 

and the whole KORALW/YFSWW team 

for everything I learnt from you 

about Monte Carlo’s
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BACKUP

SLIDES
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Benchmarking GPUs (CUDA cores or tensor cores? Which FP precision?)

A
V
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P
2

0
2

4

On data-centre NVidia GPUs, in CUDA cores

the FP32 FLOPs are 2x the FP64 FLOPs

Blackwell GPUs do have many more FP64 FLOPs 

in CUDA cores than Hopper or Ampere or Volta...

...but what you really pay for in Blackwell GPUs 

are the FP4/FP8/FP16 tensor core FLOPs for AI!

NB: CUDA cores and tensor cores are two 

different types of processors on the same chip!

You must develop two different types of software!

(In MG5AMC we do not use tensor cores yet...)
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Daniele Massaro – ESC2024

Speeding up PDF’s
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Scientific Computing and Software Collaborations
(or: working on the bridge between different units and communities)

• A big lesson learnt from porting MG5AMC to GPUs: you need collaborations with a mix of skills!

• Developing Monte Carlo generator software: which kind of job is this? In which box should it be?

– A scientist’s job? A theorist’s job? An experimentalist’s job? (A computing engineer’s job?)

– Do we need dedicated Scientific Computing units in our labs and universities?

– Do we need to have dedicated career paths similar to Research Software Engineers?

• The challenge: attracting, training, retaining people with the right competencies and interests

– Can we attract and motivate young theorists to work on software and computing optimizations?

• A theorist colleague I was recently talking to: “We had an opening for working on software optimizations for our Monte 

Carlo generator. The only suitable candidates were two theorists. But they were concerned that working on software 

optimizations would harm their future careers as theorists and refused the job. In the end, we did not hire anyone.”

– Can we attract and motivate young software engineers to work with us instead of tech or finance companies?

I am only reporting a problem here... I do not have a magic-wand solution 

in the cracks
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Helicity amplitudes – same code in CUDA and in vectorized C++

• Old slide! The new code is 

different, the idea is the same!

• Formally the same code for 

CUDA and scalar/vector C++

– hide type behind a typedef

– add a few missing operators

SIMD in CUDA/C++ uses 

compiler vector extensions!

Flexible design: being reused also in   

the vectorized SYCL implementation

Automatically 

generated!
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• Implementation is based on compiler vector extensions (CVEs): explicit vectors of floating point types

– Supported by all of the gcc, clang and (through clang) Intel icpx compilers

– Powerful but easy to use (no debugging auto-vectorization!), intuitive (they force you to design code for vector types!)

• Routinely build and compare five vectorization levels on Intel CPUs (and similar features on AMD or ARM CPUs) 

C++ vectorization in CUDACPP: overview

none 1xD, 1xF (scalar)

sse4 2xD, 4xF(128-bit xmm registers, “nehalem” SSE4.2 instruction set)

avx2 4xD, 8xF (256-bit ymm registers, “haswell” AVX2 instruction set)

512y 4xD, 8xF (256-bit ymm registers, “skylake-avx512” AVX512 instruction set)

512z 8xD, 16xF (512-bit zmm registers, “skylake-avx512” AVX512 instruction set)

Float: ~x2 faster than double

(x2 larger vector of FP values

in CPU SIMD vector registers)
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MG5aMC data parallelism: design for lockstep processing!

• In MC generators, the same function is used to compute the Matrix Element for many different events

– ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

– Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads) 

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data) 

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU 

SIMT
CPU 

SIMD
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PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Lockstep? MC generators (lucky!) vs MC detector simulation (unlucky)

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators* 

(before ME calculation):

- MC integration 

(cross sections)

- MC generation 

(event samples)

*NB: the CPU-intensive ME calculation comes 

before PS, fragmentation, detector simulation 

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)

- Particle/matter interaction 

(when? how?)

- Particle decays (when?)

Event generators*

(after ME calculation):

- MC unweighting (keep/reject) 

Parton showers (PS)

- Fragmentation and decays

DIFFERENT CALCULATIONS

ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching

Bad for SIMT/SIMD

Data parallelism (NB: MULTI-EVENT API !)
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gg→𝒕 ҧ𝒕gg

(float)

gg→𝒕 ҧ𝒕gg

(float)

ME throughput in C++ for gg→t ҧtgg (on all the cores of a CPU)

• Previous tables for SIMD speedups on C++ were for a single CPU core

• Large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)

– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512) 

– Aggregate MEs throughput from many identical processes using the standalone application 
• (HEP-workload Docker container from the HEPIX Benchmarking WG)
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Our internal Fortran-to-C++ interface: multi-event and stateless!

This outputs the squared sum of 

amplitudes (real number)

As discussed with Simon, for 

HERWIG and other generators 

it may be useful to also expose 

an API that gives the partial 

amplitude (complex number) for 

a given colour structure
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Reweighting and weight derivatives in parameter estimation

• Weight derivative: event-by-event sensitivity to the measured parameter 

• First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse

– with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

• Second: can be used as a basis for an “improved optimal observable” ML method

AV

Knowing one’s limits: maximum achievable 

information with an ideal detector

- Ideal acceptance, select all signal events Ssel=Stot

- Ideal resolution, measured i is that from MC truth

(implies ideal rejection of background events, i=0) 

Weight Derivative 

Regression

i
(MC truth) ~ q( xi

(MC) )

Data observable 

event properties xi
(DATA)

Fit WDR regressor
qi

(DATA) =  q( xi
(DATA) )

qi
(MC) =  q( xi

(MC) )

https://doi.org/10.1051/epjconf/202024506038

https://zenodo.org/record/3715951

https://doi.org/10.1051/epjconf/202024506038
https://zenodo.org/record/3715951
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Memory layouts – AOS, SOA, AOSOA

We have experimented with three possible memory layouts for momenta 

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)

We are using AOSOA’s as the current default – but this is still largely configurable

• For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
– We use an AOSOA with Nepp equal to the SIMD vector size NeppV – and an aligned malloc is needed too!

– For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

• For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
– We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)

– For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

• Coding for SIMD is more complex than coding for GPUs...

MATRIX ELEMENTS

CUDA/C++:

MEKERNELS

MOMENTA

Matrix element calculation (simplified example)
– inputs[4*Npar*Nevt] = (x,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)

– outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

Example: Npar=6 particles for the 2→4 process gg→t ҧtgg
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Monitoring GPU memory access – NSight Compute

• Explicitly collect two relevant profiler metrics in NSight Compute

– “requests” : l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

– “sectors” (i.e. transactions, network roundtrips): l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

– this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

• Profile AOS against the AOSOA baseline

– same number of “requests” in AOS and AOSOA

– AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)

– in other words: AOSOA provides coalesced memory access, AOS does not

– for what it is worth (not much!), the actual slowdown in this e+e−→+− example was only 7% however

https://github.com/madgraph5/madgraph4gpu/issues/16
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In practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity ) compute partial amplitudes Jf for each color ordering permutation f (sum diagrams relevant to f)

2. (for each helicity ) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

3. sum over helicities [Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 128 helicities (before and after filtering)]

Each step computes many events 𝒑 in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

Inside the ME calculation: Feynman diagrams, colors, helicities
Given the momenta Ԧ𝑝 of initial+final partons in one specific event

Sum over all helicity combinations  of initial+final partons

Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given  and c

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 1240 Feynman diagrams (using helicity amplitudes)

This takes ~40% of the CPU time for this process

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 120 color ordering permutations, 120x120 matrix

This takes ~60% of the CPU time for this process
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C++ vectorization – why choose Compiler Vector Extensions?

• Portable – available in gcc, clang, icpx (from clang) with minimal differences
– Do not require any external libraries or tools (VC, VCL, VecCore, xSIMD, UME::SIMD, or SYCL...)

• Powerful, but easy to use
– No need to debug auto-vectorization when it does not vectorize

– As powerful as intrinsics, but much easier to write (higher-level abstractions) 

• Intuitive – CVEs force you to think in terms of vector types!

• Minor disadvantage – no vector complex type out of the box
– But it was easy to write it in our case (RRRRIIII memory layout) as we only need + -  

– A few extensions for Boolean vector masks were needed, too

• One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype_v*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVEs!

https://indico.cern.ch/event/1100351/contributions/4629205
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Monitoring lockstep – GPU NSight compute, CPU disassemble

• GPU: explicitly collect one profiler metric in NSight Compute

– “branch efficiency” : sm__sass_average_branch_targets_threads_uniform.pct

– old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency, 

alternative with minor forced divergence has 96% efficiency (and is 20% slower)

• CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)

– but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

# Symbols in .o SSE4.2 

(xmm)

AVX2 

(ymm)

AVX512

(ymm)

AVX512

(zmm)Build type

Scalar 4534 0 0 0

SSE4.2 12916 0 0 0

AVX2 0 10630 0 0

256-bit AVX512 0 10366 12 0

512-bit AVX512 0 1267 60 99104
a

9
0

e
c
2
gg
→

t
ҧ tg
g

ACAT2022

https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt
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Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)

OLD MODEL

(2020- early 2021)

(1) MG5AMC Python framework, Fortran templates: 

“upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPP plugin, post-generation patches,

generated CUDA/C++ physics processes:

our https://github.com/madgraph5/madgraph4gpu

WIP to-do before a release: 

full port from madgraph4gpu 

to mg5amcnlo (remove post-

generation Fortran patches, 

add CUDACPP upstream)

... and beyond

Stefan 

Roiser

A.V.

https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu
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• You will still need to loop over multiple sets of N events

– And the internal implementation of N-event processing may still involve some loops!

• N should be at least as big as the minimum number of events for which strict lockstep is required

– On a CPU: number of variables in a vector register (most complex case: 16 floats in a 512-bit AVX512 register)

– On a GPU: strictly speaking, number of threads (typically: 32) in a GPU “warp”

• Our present implementation: number of threads to “fill” the GPU (typically: 16k, up to 500k)

• NB: I focus on event-level parallelism, but other options exist

– In MG5AMC we will investigate using 1 GPU thread per helicity per event...

What about loops? And how many are N events?

PROCESS N EVENTSN IN N OUT

(N x M EVENTS)

LOOP OVER 1...M

"Process N events": three implementation examples (there can be more!)

1. CPU scalar: internally loop over N events, process each one individually

2. CPU vector: hold the events in a SIMD vector of size N, 

3. GPU kernel: each of the N events is processed by one of N GPU threads

...one more item on our to-

do list for next year...

(also because so many 

events may lead to biases)
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Why focus on complex processes? Compute >> memory!

• We are lucky: the more 

complex the physics process, 

the less relevant is the cost of 

GPU-CPU data copies!

– Similarly (later): the more 

complex the process, the less 

relevant is the overhead from 

scalar Fortran in madevent!

– And the fewer events in flight 

needed to fill the GPU...

• In this talk I mainly give 

performance numbers for 

complex processes like 

gg→t ҧtgg or gg→t ҧtggg

e+e-→+-

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠
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Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ҧ𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU

– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced 

– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of 

GPU grid size (#blocks * #threads)

This is the number of events 

processed in parallel in one cycle

Nvidia V100 GPU

Silver 4216 4-core CPU
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Lockstep beyond event-level parallelism

• Efficient data parallelism (lockstep processing) requires the same function computed for different data
– This is true in MG5AMC at the event level (different events i.e. different phase space points)

– But it is also true at the sub-event level (different helicities within the same event)

• We are evaluating the move to a different data parallelism strategy on GPUs
– Currently: one event (sum over all helicities) per GPU thread

– In the future: one helicity of one event per GPU thread?

• Advantages:
– You can fill the GPU with much fewer “events in flight” – more balanced sampling/integration in MadEvent

– This is a prerequisite for moving the color matrix to externally-launched cuBLAS and tensor cores

– This is also a prerequisite if we want to evaluate much smaller kernels
• From all Feynman diagrams in one kernel to one Feynman diagram per kernel?

• Which might decrease register pressure and increase kernel occupancy, but would require more global memory access
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PF MEs

• Write code once for many CPU/GPU vendors

• Support NVidia, AMD and Intel GPUs out-of-the-box

– Limited support for vendor-specific features

• SIMD added via SYCL in Jan 2023, analysing results

• CPU multithreading out of the box

CUDACPP MEs 

• 95% common code + a few #ifdef's for CUDA vs C++

• Designed for NVidia GPUs (so far: will add HIP/AMD) 

– Full feature support, e.g. tensor cores, streams, graphs

• Designed upfront for SIMD speedups on vector CPUs

• WIP on CPU multithreading and heterogeneous modes

For the moment: we plan to continue development in parallel using both approaches – comparisons are very useful!

Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
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CUDACPP vs. Portability Frameworks – recap

• CUDAPP (our initial implementation) is where we add new features first

• The SYCL implementation of MG5aMC is now almost at the same level, the KOKKOS one somewhat behind

• The ALPAKA implementation of MG5aMC is no longer maintained

Backend
ME code 

generation

Standalone 

application

Actively 

maintained

MadEvent 

application

Latest dev 

code base

CUDACPP ✓ ✓ ✓ ✓ ✓

SYCL ✓ ✓ ✓ ✓ ~ ✓

KOKKOS ✓ ✓ ~ ✓ WIP WIP

ALPAKA

(CUPLA)
✓ ✓   
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CUDACPP vs PFs - GPU ME throughputs (standalone application)

• The performances of the SYCL and Kokkos implementations of MG5aMC seem comparable to direct CUDA

– Further comparisons are in progress, performance scales differently with more jets for different backends (next slide)

• SYCL and Kokkos run out of the box also on AMD and Intel GPUs

– They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

INTEL NVIDIAAMD

(gg_ttgg) 16k

Fixed GPU-grid size (throughput plateau)Variable GPU-grid size (throughput scan)
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CUDA vs SYCL on NVidia A100

• SYCL and CUDA implementations have ~similar performances but

– SYCL seems better for less complex processes

– CUDA seems better for more complex processes

• These are very recent results, which are still being digested (WIP!)

– It will be very interesting to understand more in detail what goes on

We plan to also compare more systematically the CUDACPP and SYCL performances 

on CPUs (vectorization, multi-core), but it will take time and optimization tweaks... WIP!

PRELIMINARY!

N. Nichols, T. Childers (SYCL)

J. Teig (tests/plots)

𝐠𝐠→𝐭 ҧ𝐭

𝐠𝐠→𝐭 ҧ𝐭𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠𝐠

CUDA < SYCL

CUDA < SYCL

CUDA > SYCL

CUDA > SYCL
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MORE BACKUP

SLIDES
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Code generation: how did we bootstrap the project?
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Filling the GPU – minimum number of threads (events in flight)

• We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

• But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
– Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event  across many kernels)?

– Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?

– Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?

https://doi.org/10.1051/epjconf/202125103045 (vCHEP 2021) 

https://doi.org/10.1051/epjconf/202125103045
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Numerical precision: CADNA
(can we use floats instead of doubles?)

• Application to MG5AMC CUDACPP:

– assess precision of the ME calculation (when using 

floats: down to 3 significant digits in gg to ttggg)

– understand where in the code the precision is lost 

(typically, cancellations subtracting large terms, one 

example being heavily suppressed helicities)

S. Hageboeck, Gargnano meeting 18 Sep 2023

F. Optolowicz, CERN EP-SFT meeting 21 Aug 2023

https://indico.cern.ch/event/1264290/

https://indico.cern.ch/event/1240244/contributions/5474419/
https://indico.cern.ch/event/1309774/
https://indico.cern.ch/event/1264290/
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All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

• Helicity filtering – at initialization time, compute the allowed combinations of particle helicities

– This is computed in CUDA/C++ using the same criteria as in Fortran 

• “Multi-channel” – single-diagram enhancement of ME output

– This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

• Event-by-event running QCD coupling constants s(Q
2)

– The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event 

• Event-by-event choice of helicity and color in LHE files

– Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

– NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)

• We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

https://doi.org/10.1088/1126-6708/2003/02/027
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Benchmarking – Madgraph and the HEP-SCORE project

• HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06

– Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers

– The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

• The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs

– (and ideally measure how well an application is doing compared to the theoretical power of the server...)

– fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

• A first container based on our Madgraph-on-GPU has been prepared

– Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!

– And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

• The plots on the next slides are based on this HEPscore container: several identical copies/processes

– (A multi-threaded CUDACPP version exists but not optimized yet – SYCL and Kokkos also provide MT)
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MG5AMC is not alone – SHERPA on GPU (BlockGen)

• Note: unlike MG5aMC, based on Feynman diagrams, 

SHERPA uses ~Berends-Giele recursion relations

– Allows computations with more final-state jets

• No ongoing effort on CPU vectorization (yet)

• Planned Les Houches project: a detailed comparison 

of software performances of MG5AMC and SHERPA

– Tentative process list: pp to tt(0-3jets) or Z(0-3jets)

– Previously, an old wish of the HSF generator WG

– (NB: not a comparison of physics results or distributions)

From http://dx.doi.org/10.21468/SciPostPhysCodeb.3

More recent results were presented in June 2023 

in Les Houches by Max Knobbe

http://dx.doi.org/10.21468/SciPostPhysCodeb.3
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EVEN MORE 

BACKUP

SLIDES
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OM, mgongpu

dev meeting

22 Jun 2020 
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OM, mgongpu

dev meeting

22 Jun 2020 
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SH, mgongpu

dev meeting

30 Nov 2020 
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OM, mgongpu

dev meeting

7 Jun 2021 
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OM, mgongpu

dev meeting

7 Jun 2021 
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OM, mgongpu

codegen workshop

16 Sep 2021 
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