
Histogram context HCONTEXT: 
Scope context switcher streamlines generation of histogram varianats 
Filling operator >>: 
Provided set of operators streamlining filling from various datum.

x >> HIST1(…) // x any elementary type, double, int, std::string, … 
std::make_pair/tuple(1, 5) >> HIST1(…)/HIST2(…)/PROF1(…)/EFF1(…) // pairs
& tuples  
std::optional<double> y{};

y >> HIST1(…) // optional handled as argument (skips fill operation)

lazy_c.map(F(_.a_value)) >> HIST1(…) 
lazy_c.map(F(std::make_pair(_.a_value, _.b_value))) >> HIST2(…)

// lazy collections can fill the histograms as well

ROOT Trees reading supported n the same manner

Creation (similar to ROOT): 
HIST1(“name”, “title”, nbins, min, max)

HIST1V(“name”, “tile”, std_vector_of_bin_edges)

+ HIST2, HIST3, EFF1, EFF2, EFF3, PROF1, PROF2, (with V variants) & GRAPH 
 
These are responsible for booking/registering/discovering histograms. 
Thanks co combination of macros & static lambdas convenient object-
singleton pattern. Typical usage: 
data_in_lfv >> HIST1(“data”, “;unit”, 100, 0, 100);

N code lines 1 per plot⟹

Example analysis code*

Functional container

Tomasz Bold  
AGH University of Krakow, Dept. of Physics and Applied Comp. Sciences

FunRootAna - analysis in functional approach

Functional programming is regaining popularity in specific domains.  
This is due to several multi-paradigm languages like F#, Scala, Kotlin,… 
The functional approach shines in processing collections (e.g. Spark) where
units of computations are projected into filter-map-reduce paradigm.  
The C++ views, debuted in standard c++20, provide similar “look and feel”
but allow to mutate the containers. A simpler solution is provided by
FunRootAna. The functionality is tailored for typical analyses. 
 Common elementary analysis tasks are:

- filter objects, 
- extract quantity out of object, 
- accumulate,  
- … 
All of these are best approached assuming immutability of the data (e.g. Spark
RDD). FunRootAna provides functional API for any c++std container. Main
features of FunRootAna functional container are: 
- complete set of functionalities, 
- lazy evaluation,

- immutable container, 
- convenience macros to reduce C++ boiler plate.

Construction Lazy Functional Container:

lazy_view(container) // for any container with begin & end 
lazy_view(array, size) // for plain array 
one_own(value) // for single value 
geometric/arithmetic/iota/random_streams // infinite sequences

Operations Lazy Functional Container:

map(function) // transforms

filter(predicate) // select according to function 
take/skip(N, stride) take/skip_while(predicate) // elements range selection

foreach(procedure)

chain(other) // concatenation 
cartesian(other) // all possible pairs 
zip(other) // pairwise combined

all/any/count(predicate) // predicates

…. // and more

The effectiveness of data exploration depends on flexibility of processing
system. E.g. to define and fill a histogram one should require a single line.  
FunRootAna streamlines commonly tedious tasks such that the construction/
registration/usage of one histogram/efficiency plot/graph takes only a single
line. 

const size_t N = 1000;

auto randToUniform = F((_ % 1000)/1000;); // shorter variant

auto x_vec = lfv::crandom_stream().take(N).map(randToUniform).stage();

auto y_vec = lfv::crandom_stream().take(N).map(randToUniform).stage();

auto x = lazy_view(x_vec);

auto y = lazy_view(y_vec); 
x >> HIST1("x", "", 10, 0, 1);

y >> HIST1("y", "", 10, 0, 1);

auto points2d = x.zip(y);

points2d >> HIST2(“x_vs_y”, “;x;y”, 100, 0, 1, 100, 0, 1); 
auto inCircle = points2d.filter(F(std::hypot(_.first, _.second) < 1)); // no-op

inCircle.size() / static_cast<double>(N) >> HIST1("pi_over_4", "", 100, 0, 1);

Operations can be chained and lazy evaluation used whenever possible: 
e.g. data.filter(F(_>4)).filter(F(_%3 == 0)).map(F(_*_)).filter(F(_+2)) - no-op

None of the operation mutate containers. 

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

0.6 0.65 0.7 0.75 0.8 0.85 0.9

/4π

0

50

100

150

200

250

300

N
 tr

ia
ls

0 0.2 0.4 0.6 0.8 1
x

0

20

40

60

80

100

120

140

N
 p

oi
nt

s

x
y
x
y

Estimate value of via trivial MC integration π

UMO-2023/51/B/ST2/00920

Future
Functionality provided in FunRootAna is sufficient to perform typical analyses. The build in collection immutability is a good start. ROOT histograms filling
requires attention currently but will be made safe in future ROOT versions (global lock solution to slow). Additional functionality for concurrent trees reading is
envisaged as well.  
In typical analysis, an evaluation of systematic effect can be carried out together with main analysis. A support for automatic handling of that aspect is planned.

CHEP 19-25 October 2024, Krakow, Poland

*in fact this calculation can be done in single, not so long line

