
WHAT’S NEXT

TraceWin@INFN Cloud
 Manage distribution of I/O files

 Kubernetes volumes

 In-memory volumes to get fast I/O

 Improve accessibility for end users

 Dask/Ray Cluster as a service?

 Authentication?

 Better debug messagges

 e.g. failed TraceWin computation

As for RL training
 Ongoing testing with different off-policy RL

algorithms

 Develop a custom policy to exploit previous

emittance results

 Extend RL learning to other components in the

beam path

 Extend the application to other beam lines

Beam dynamic simulations

SCALING TO THE CLOUD: DASK & KUBERNETES

 Dask is an open-source Python library for parallel and
distributed computing, thanks to which we can define
multiple tasks (e.g. functions operating on Python
objects) and submit them on available workers

Dask as a task scheduler

 Automatically distributes tasks which
employ native Python data structures
(DataFrames and Numpy Arrays) and
schedules user-defined jobs in parallel

Dask Cluster
 Docker image with the environment to run TraceWin:

 From gchr.io/dask:latest, add a new user, ML Python
packages and the TraceWin executable

 Automatic setup through YAML files

 Dask cluster on top of a k8s cluster

 Scale to a large number of worker nodes

 Dynamic cluster

 Common interface

 Do not depend on the VM provider

 Portable

WHY?

 At INFN Legnaro National Laboratories we manage a wide particle accelerator complex for research

in fundamental physics

 These are monitored and controlled by thousands of sensor and actuators, which need to be tuned in

order to keep the beam on its ideal trajectory with specific parameters such as its intensity

 Manual setup by expert operators is usually performed, but can’t be enough to take into account all

variables. Real-time testing is expensive: steals time to experiments' data-acquisition and because of

operation costs

 We want to find the optimal setpoint of each beam transport element to optimize beam properties

in an automated manner

Acceleratore Di Ioni a Grande Carica

Esotici (ADIGE) is a beam line locat-

ed in the middle between SPES and AL-

PI. It receives the 1+ radioactive ion

beams, produced in the SPES TIS, with

the goal of increasing their charge

state thanks to a charge breeder, so

that they can be accelerated more ef-

fectively in the ALPI accelerator.

The ADIGE Medium Resolution Mass

Separator (MRMS) electrostatic multi-

pole (AD.EM) is used to correct the

beam emittance between two bending

dipoles.

REINFORCEMENT LEARNING WITH RAY

Having deployed an arbitrary number of docker containers to execute TraceWin in the Cloud, we wanted

to harness the available computing power for ML purposes, and it was enabled by the Ray framework: an

enterprise-grade unified framework for scaling AI and Python applications. It provides the same functionality

as Dask, that is the scheduling of TraceWin instances in parallel on a k8s cluster thanks to the Ray

Clusters library, with the support for a wide range of ML algorithms to be executed in a distributed

environment, thanks to the Ray Rlib library.

Goal: learn a model to reduce the emittance of the beam by acting on MRMS multipole voltage terminals

The State represents the emittance of the beam with a matrix of 42x42.

An Environment class implements standard RL methods by using the TraceWin simulator

and performs the following operations:

• Reset: resets the multipole to random values

• Step: called at each iteration of the episode, it computes the new multipole parameters

given the Actions of the agent, retrieves results and computes the Reward

1 Scheduler (8CPU, 16GB) - Up to 40 Workers (1CPU, 1GB)

Output file Type Description

partran1.out csv Main beam properties at each beam line element

part_dtl1.dst binary Distributions of beam properties at the end of the beam line

dtl1.plt binary Distributions of beam properties at each beam line element

Many more…

TraceWin is a simulator of beam dynamics in particle accelerators with

integrated optimization algorithms and is developed by CEA in France.

 It has a command-line interface available, but some properties are

accessed only through the GUI

 Not extensible and closed source:

 No API/library for any programming language

 Input and outputs through files

 Long start-up operations for each new simulation: loading of

large configuration files in RAM (hundreds of MBs even for shorter

beam lines)

$ TraceWin project.ini path_cal=outdir hide nbr_part=10000 .

HOW: PYTRACEWIN

We developed pytracewin: a Python wrapper for TraceWin executables to launch simulations from

python and jupyter notebooks in an easy way. It doesn’t require a GUI and can be run on remote servers:

 Python module to be installed with pip

 It defines an homonymous TraceWin class to interact with the simulator:

 It invokes the TraceWin executable with the subprocess command

 It handles runtime parameters, raise exceptions and timeouts to avoid blocking calls

 Parses the output binary file of the TraceWin application

to return Pandas DataFrames

We can launch simulations programmatically from Python, for example to test

many values of a parameter to find when it gets close to a minimum and refine

from that point. Still, we are limited to a single machine, and to the execution of

a single TraceWin instance at any given time because of concurrent I/O opera-

tions on the same output files. We could run the application on fat servers, but

this doesn’t scale much, and often simulations are independent from one another.

It’s an embarrassingly parallel type of workload, which would benefit from a

distributed environment. For so we need:

• A coordination mechanism between tasks

• A simple interface to send tasks to workers only when they have finished

the previous computation and return the results

• Possibly backend-agnostic of the specific platform used (multiple VMs,

Cloud, etc.) and the computing power available

Usage

 INFN—Cloud: an open, ex-

tensible, federated Cloud in-

frastructure and service port-

folio targeted to scientific

communities based on Open-

Stack

 CloudVeneto: federated site

of INFN-Cloud that offers fully

managed orchestration plat-

form as a cloud service,

e.g. users just have to define

and deploy their containers

using the Container-as-a-

Service (CaaS)

daniel.lupu@cnaf.infn.it

Conference on Computing in High Energy Physics — Kraków (Poland) October 19-25, 2024

Scaling TraceWin beam dynamic simulations on Kubernetes for Reinforcement Learning training

L. Bellan1, M. Biasotto1, M. Comunian1, S. Fantinel1, M. Gulmini1, Q. Y. Jian1,4, D. Lupu3, D. Marcato1, G. A. Susto4, L. Zangrando2

1. INFN - LNL 2. INFN - PD 3. INFN - CNAF 4. UNIPD

To avoid conflicts because of concurrent access on I/O files

we need to force a single TraceWin execution per worker

=> @nthreads=1
Only one available thread, such that no more than one

Dask task can be executed at anytime per container or pod

Ray&k8s: each worker has 1 CPU core and 4GB RAM

*Theoretical speedup computed considering the

time it takes to run a single simulation multiplied

by their number, on a single workstation (CPU

5600G, 32GB RAM). Training the model takes

negligible time compared to the execution of

TraceWin simulations during each episode.

The initial approach was based on the Stable-

Baseline3 library within Pytorch. The Proximal-

Policy-Optimization (PPO) algorithm constrains

the policy update to avoid large changes at each it-

eration by clipping the ration between the new

and old policy. With the vanilla algorithm we built a

model which would converge in 2.2 steps, but

needed ~5 days of training with a single work-

station. By executing multiple instances of Trace-

Win in parallel on a k8s cluster we could train the

model considerably longer and took into account

real-world conditions, such as:

 random initial emittance

 different energy spread

 variation of the input distribution with a differ-

ent initial emittance

