
bamboo: A high-level HEP analysis
library for RDataFrame

27th international conference on Computing in High Energy and Nuclear Physics
Jindrich Lidrych (CP3, UCLouvain) on behalf of the bamboo-hep team

“Hello world” example: dimuon invariant mass
from bamboo.analysismodules import NanoAODHistoModule
from bamboo.plots import Plot, EquidistantBinning as EqBin
from bamboo import treefunctions as op

class DimuonPlots(NanoAODHistoModule):
def definePlots(self, tree, noSel, sample=None, sampleCfg=None):

plots = []
if self.isMC(sample):

noSel = noSel.refine(“mcWeight”, weight=tree.genWeight)
muons = op.select(tree.Muon, lambda mu:

op.AND(mu.pt > 30., op.abs(mu.eta) < 2.4, mu.mediumId))
muons = op.sort(muons, lambda mu: -mu.pt)
twoMuSel = noSel.refine(“has2mu”, cut=(op.rng_len(muons) > 1))
plots.append(Plot.make1D(“dimuM”, (muons[0].p4+muons[1].p4).M(),

twoMuSel, EqBin(100, 20., 120.), title=“Invariant mass (GeV)”))
return plots

What is bamboo?
A python analysis framework based on ROOT RDataFrame
• A set of tools to efficiently build RDF graphs (JIT-compiled)
• An embedded domain-specific language for producing plots,

skim etc.

Design principles
• Analysis code should be as simple and compact as possible
• Be as fast as possible
→ usually one or the other

CMS NanoAOD format + ROOT RDataFrame
→ write physics, not loops

Main idea: decorate tree
• Decorated version of the input TTree: an event looks like a set of containers of physics objects

(jets, muons, electrons etc.) and (groups of) per-event quantities (MET, PV, HLT etc.)
• User builds expressions (cut, variables, …) from these python objects
• When done, convert expressions to appropriate (C++) strings, build RDataFrame, run over all

samples, and make plots

• Not specific to the CMS NanoAOD format, nearly any flat tree format may work

Processing modes
Sequential:

• Default mode, mostly useful for quick test
• Need to build one RDF graph per sample

Parallel:
• Use RDF::RunGraphs
• Can use implicit multithreading

Batch:
• Submit jobs on a cluster (HTCondor, Slurm supported)
• Monitoring loop, combines results for one sample as

soon as its jobs are done

% bambooRun ... -–distributed sequential

% bambooRun ... -–distributed parallel

% bambooRun ... -–distributed driver

Postprocessing
• Write YAML config file with list of plots and

files, and call plotIt

plotIt:
C++ tool to produce stacked plots using ROOT

bamboo-hep team
• Pieter David – original author
• Oguz Guzel, Khawla Jaffel,

Jindrich Lidrych, Sebastien Wertz

Documentation

Systematic uncertainties
• If an expression is marked as having systematic variations,

bamboo will automatically branch the RDF graph
• All systematics are computed on the fly

Event weights

Scale factors
• Interface for correctionlib & json file in common CMS format

Energy scale corrections – CMSJMECalculator
• C++, RDF-friendly standalone package
• Re-apply jet energy correction, smear jet momentum
• Re-calculate missing transverse energy (MET)
• Jets/MET kinematic variations are computed on the fly,

automatically propagated to selections & plots

from bamboo.scalefactors import get_correction

muIdSF = get_correction(”Muon_SF.json”,”Muon-ID-SF”,
params={“pt”: lambda mu: mu.pt, “eta”: lambda mu: mu.eta,

“year”: “2018UL”, “WorkingPoint”: ”Medium”},
systParam=“ValType”, systNomName=“sf”,
systName=“muId”, systVariations=(“sfup”,”sfdown”))

twoMuSel = noSel.refine(“has2mu”, cut=(op.rng_len(muons) > 1),
weight=[muIdSF(muons[0]),muIdSF(muons[1])])

from bamboo import treefunctions as op

psFSRSyst = op.systematic(1., name=“psFSR”,
up=tree.PSWeight[1], down=tree.PSWeight[2])

selWithSyst = noSel.refine(“withFSRSyst”, weight=psFSRSyst)

Running an analysis
Running an analysis in bamboo requires:
• An analysis module deriving from a base class (see “Hello world” example)
→ reuse bamboo’s facilities for job submissions, sample bookkeeping, etc.

• A configuration YAML file with input samples

Then, just run it:

tree: Events
eras:

2018UL:
luminosity: 59830.

samples:
DYJetsToLL_0J_TuneCP5_13TeV-amcatnloFXFX-pythia8:

era: 2018UL
db: das:/DYJetsToLL_0J_TuneCP5_13TeV-amcatnloFXFX-pythia8/…/NANOAODSIM
cross-section: 4757.
generated-events: genEventSumw
split: 10

% bambooRun –m dimuon.py:DimuonPlots dimuon_sample.yml –o myPlots

Features and more
Fairly complete set of features
for a typical LHC analysis
• Evaluating MVAs: TMVA,

Tensorflow, ONNX
Runtime, SOFIE

• Data-driven background
estimations

• Making cut flow reports
• Splitting an MC sample into

subcomponents
• …

Basic building blocks
Selection object
• Holds cuts and weights
• Start from inclusive selection, unit weight
• Gradually refine selection: add cuts

and/or weights
• RDF::Filter nodes

Declaring a plot
• Requires only selection object,

and plotted quantity
• Fill single or multiple entries

(collection)
• RDF::HistoND nodes

More advanced functionalities follow same interface
• Selections for data-driven estimations
• Categorized selections

Skims
• RDF::Snapshot nodes

class basicPlots(NanoAODHistoModule):
def addArgs(self, parser):

...
def customizeAnalysisCfg(self, analysisCfg):

...
def prepareTree(self, tree, sample=None,
sampleCfg=None):

...
def definePlots(self, tree, noSel, sample=None,
sampleCfg=None):

...
def postprocess(self, taskList, config=None,
workdir=None, resultsdir=None):

...

bamboo module can look like as

In the backend: proxies and operations
Operations
• Can be directly converted to C++ strings for JITing
• Simple python objects, immutable – can be modified

through a clone, e.g. for systematic variations

Proxies
• Represent objects in the tree, and quantities derived

from those
• Behave like the value they represent (list, float,

LorentzVector, …)
• Wrap operations
• Automatically generated based on the branches found

