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Abstract: The reconstruction of charmed baryons using Machine Learning (ML) in the ALICE experiment at the CERN LHC offers a valuable use-case to develop a user-friendly and interactive open-

Artificial source pytorch-based environment to test the INFN computing infrastructure and perform BDT-based multivariate analyses within the activities of FAIR, a European project synergic to the ALICE

Binary classifier workflow/search strategy

JupyterHub for ReCaS users

methods&Resources: The FAIR benchmark impoh
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1. Define the side bands (SB) and signal region SR of invariant mass (M;,,)

Objectives . .
| 1. Search independent variables on M.,
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1. Test data in SB (i.e. combinatorial
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4. Cut application on data in SR

[2] ALICE Coll., «Study of flavor dependence of the baryon-to-meson ratio in proton-proton collisions at Vs=13 TeV», https://doi.org/10.1103/PhysRevD.108.112003

A{ - p K nt™ with a Tight preselection BDT vs AE (ONGOING)

Common preselection on input features (Tight to improve the quality of input dataset)

Boosted Decision Tree (BDT) Autoencoder (AE) Model performance:
- CLASS 0 (background) : ALICE data from LHC Run 3 - Ordinary events (background) : ALICE data from LHC Test ROC curves
pp collisions in SB Run 3 pp collisions in SB

« BDT shows a larger Area Under Curve
- CLASS 1: ALICE MC data simulating the signal in SR - Test labelled sample: ALICE data from LHC Run 3 pp (AUC) than AE
collisions in SB + MC simulations in SR
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[1] M. Antonacci et al., «The ReCaS Project: The Bari Infrastructure”, https://doi.org/10.1142/9789814759717_0003 charge conjugates.

Test significance (siQ)

Signal
J/Signal+Background

S18 afterMLcut —

after a cut on the min BDT class 1 score (or AE MSE)
BDT score thr = 0.73, AE MSE thr = 0.0002 at maximum significance
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Computing performance during interactive execution of the Use Case Jupyter Notebooks in which 16 CPUs and 0.1 .
partitioned shared GPU were allocated (standard privileges) * AE has a better efficiency after the MSE-cut.

The next project activities are:
- To study on the =_.* — p K™nt* (and its charge coniugate) process v already started

- To monitor the new resources/new infrastructure as varying the dataset statistics, ML models, and computing resources input and fill the equivalent tables.

« Significance after the cut on BDT score improves more but it corresponds to a lower efficiency.

Conclusions: The UC is in a mature state to present the computing performance and the training outputs of two different approaches, the binary classification and anomaly detection, for the signal ML-
based discrimination in the ALICE experiment. These preparatory studies led the decision to keep both approaches to exploit their respective advantages in the future infrastructure tests and in the physics

analysis performance.
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